Antibacterial Activity of Marine Bacterium Pseudomonas sp. Associated with Soft Coral Sinularia polydactyla against Streptococcus equi Subsp. zoepeedemics

1,2Ocky Karna Radjasa, 3Siti Irina Oktavia Salasia, 1,2Agus Subdono, 4Jutta Weise, 5Johannes F. Imhoff, 6Christoph Lämmler and 7Michael J. Risk

1Department of Marine Science, Diponegoro University, Semarang, 50275, Central Java, Indonesia
2Center for Tropical Coastal and Marine Studies, Diponegoro University, Widya Puraya, Semarang, 50275, Central Java, Indonesia
3Faculty of Veterinary Medicine, Gajah Mada University, Yogyakarta 55281, Indonesia
4Leibniz-Institute of Marine Sciences (IFM-GEOMAR), 24105 Kiel, Germany
5Institut für Pharmakologie und Toxikologie, Justus-Liebig-Universität Gießen, 35392, Gießen, Germany
6School of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada

Abstract: A marine bacterium associated with soft coral Sinularia polydactyla collected from Bandengan water, Jepara, North Java Sea, Indonesia, was successfully screened for antibacterial activity against pathogenic bacterium Streptococcus equi subsp. zoepeedemics K6.72 isolated from infected monkey of the island of Bali and identified based on morphological, biochemical, and molecular methods. Marine bacterium was identified as Pseudomonas sp. based on its 16S rDNA and was found to amplify gene fragments of Non-ribosomal peptide synthetase (NRPS). Cloning and subsequent sequencing, a 360 bp long DNA fragment was obtained and the deduced amino acid sequence showed conserved signature regions for peptide synthetases and revealed a high similarity of 61.1% to genes peptide synthetase of Bacillus subtilis.

Key words: Screening, soft coral-associated bacteria, secondary metabolites

INTRODUCTION

Soft corals are an important and diverse group of colonial invertebrates belonging to the Phylum Coelenterata (Cnidaria), Class Anthozoa, Subclass Octocorallia. One of the major groups, the order Alcyonacea consists of hundreds of different species including the member of Sinularia can dominate many Indo-Pacific reefs (de Nys et al., 1991). Furthermore, one of the reasons for the evolutionary success of the alcyonacean soft corals in the Indo-Pacific is considered to be the high level of secondary metabolites commonly found in their tissues (Sammarco and Coll, 1992). Thus, it has been the main reason for the searching of secondary metabolites with various biological activities from softcorals.

Among streptococci, Streptococcus equi subsp. zoepeedemics has been known as the cause of infection of a wide variety of animals such as pigs, cows, goats and monkeys (Salasia et al., 2004), which resulted in the occurrence of pneumonia, meningitis and arthritis. Infections of streptococcus group C (SGC) have been reported from Mexico (Edwards et al., 1988) and the island of Bali, Indonesia (Salasia et al., 2004). Further, Bradley et al. (1991), reported that infection of SGC was caused by pathogenic Streptococcus zoepeedemics (72.7%).

Bioactive-producing marine invertebrates, including softcorals are insufficient for producing commercial quantities of metabolites of interest. Therefore, a solution to overcome the problem of supply is needed. It has been widely reported that many bioactive natural products from marine invertebrates have striking similarities to metabolites of their associated microorganisms including bacteria (Proksch et al., 2002; Thiel and Imhoff, 2003; Radjasa et al., 2007). Thus, it is important to highlight the possible role of marine bacteria associated with soft coral in providing solution to the problem of infection by pathogenic bacterium Streptococcus equi subsp. zoepeedemics. Bacteria-soft coral association that occurs on the soft coral surface then could be of great interest to search for potential use as new source of antibiotics.

Advanced techniques of molecular biology such as Polymerase Chain Reaction (PCR), in particular the application of degenerated primers of Non-ribosomal peptide synthetases (NRPS) to amplify gene fragments.