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Abstract 

In bakery production product quality attributes as crispness, brownness, crumb and water 
content are developed by the transformations that occur during baking and which are 
initiated by heating. A quality driven procedure requires process optimization to improve 
bakery production and to find operational procedures for new products. Control vector 
parameterization (CVP) is an effective method for the optimization procedure. However, 
for accurate optimization with a large number of parameters (representing the control 
vector), CVP optimization takes a long time for computation. In this work, an improved 
method for direct dynamic optimization using CVP is presented. The method uses a 
sensitivity based step size refinement for the selection of control input parameters. The 
optimization starts with a coarse discretization level for the control input in time. In 
successive iterations the step size was refined for the parameters for which the performance 
index has a sensitivity value above a threshold value. With this selection, optimization is 
continued for a selected group of input parameters while the other non sensitive parameters 
(below threshold) are kept constant. Increasing the threshold value lowers the computation 
time, however the obtained performance index becomes less. A threshold value in the 
range of 10-20% of the mean sensitivity satisfies well. The method gives a better solution 
for a lower computation effort than single run optimization with a large number of 
parameters or refinement procedures without selection. 
 
Key words: Baking, optimal operation strategy, baking model, product quality, 
optimization. 
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1. Introduction 

Quality driven process design can help to meet the challenges of the food industry to 
produce high quality products. Moreover, the approach also can create flexibility to 
produce a wide range of products. In quality driven process design, one starts with a 
process model, which describes the conversion process from ingredients and process 
conditions, to the product. Next, the product specifications are translated to an objective 
function. An optimization procedure is applied to find the required product treatment as a 
function of time and time dependent process conditions. Finally, the treatments are 
translated into processing equipment (Hadiyanto et al. 2007b; Garcia et al. 2006). 

To solve the optimization problem for the processing time indirect and direct methods for 
dynamic optimization are available. Indirect methods are based on the calculus of 
variations and use adjoint variables. It follows from the calculus of variations that optimal 
conditions have been obtained when the derivative of the Hamiltonian with respect to the 
inputs equals to zero for any point at the input trajectories (Bryson and Ho, 1975). 
Therefore indirect methods require the computation of the gradient and a search for the 
control variables trajectories for which the gradient is zero. Betts and Huffman (1998) 
mentioned two main drawbacks for this approach. First, the necessary conditions for 
optimization have to be defined and for complicated nonlinear dynamic system this can be 
quite daunting task. Second, the region of convergence may be surprisingly small, 
especially when the adjoint variables values do not have a clear physical meaning.  

For direct methods the dynamic optimization problem is transformed into a nonlinear 
programming problem. The main advantage is that there is no requirement to satisfy the 
necessary conditions for the Hamiltonian function or to use adjoint variables. The control 
variables are adjusted and optimize the objective function directly. A well known direct 
method parameterizes the input trajectory over the time interval; this approach is named 
control vector parameterization (CVP) (Betts and Huffman, 1998).  

Both methods (indirect and direct) have been applied for baking processes (Hadiyanto et 
al, 2007b) . Optimization resulted in optimum heating trajectories which can be translated 
into design for unit operations. The direct method is based on a low discretization level of 
the control input for heating and cooling. As a consequence, the results obtained with the 
direct method were of less quality compared to that of the indirect method. Proper choice 
of the discretization level is a point of concern. Low numbers may not yield optimal 
results, while a high number mostly may end in local minima and an input trajectory with 
strong switching values (see Roubos et. al, 1999).  

The computational time required for direct methods increases significantly with the 
number of parameters. In recent years a number of methods to reduce computational time 
of large-scale optimization problems were proposed; for example refinement of control 
input (Binder et al, 2000; Schlegel et al, 2005) or successive re-optimization (Garcia et al, 
2006). These refinement methods start the optimization with a rough grid (a few 
parameters) and subsequently the grid is refined to increase the resolution of the control 
inputs (Binder et al, 2000 and Schlegel et al, 2005). After some refinement iterations a 
smooth grid is obtained for an acceptable computation time. In the approach of Garcia et 
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al. (2006) the refinement is applied to all positions in the time grid by halving the step size 
from previous refinement iteration until the stopping criteria are fulfilled. However, it must 
be noted that not all parameters have significant effect on the improvement of the objective 
function. Therefore, one can reduce the necessary computation time by applying the step 
size refinement only at points in the time grid with enough sensitivity. This paper 
illustrates the use of the sensitivity based refinement method for the design of optimal 
baking operations.  
 
 
2. Dynamic Optimization 
2.1 Problem formulation 

Dynamic optimization, also known as open loop optimal control, computes a set of control 
variables as a function of time that minimizes or maximizes an performance index. The 
performance index (J) composed from the terminal (Ф) and running cost (L) is optimized 
within the constraints of the process ( ),,( uxtfx =& ), and the defined lower and upper 
bounds of input variables (u):  
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2.2. Control Vector parameterization 

For direct dynamic optimization the optimal control problem is transformed into a Non 
Linear Programming (NLP) problem. Control vector parameterization implies that the 
control input is discretized and approximated by a basis function with a limited number of 
parameters. The state variables in the process model remain in the form of continuous 
differential equations (Goh and Teo, 1988) (Figure 1). These differential equations are 
solved by forward integration and for the endpoint (t=tf) the performance index is 
evaluated and optimized over a number of iterations. 
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Figure 1. Example of a piece wise constant discretized control input and continuous 
trajectories of the states and the development of the performance index.  

 

Mostly a low order B-spline function (for example piece-wise constant or piece-wise linear 
functions) is used to represent the control inputs. Polynomial functions such as Chebychev 
polynomials can also be used.  

For piece-wise constant functions the control input is formulated as: 

[ ]1( ) ,
0,1,.. 2
k k ku t u t

for k N
τ τ += ∈

= −
     (2) 

 

2.3. Refinement Procedure 

A fine grid for the discretization of the control vector in time improves the quality of the 
control strategy, but it has significant effect on the computational effort. Therefore, to limit 
the computational effort, we propose to start with optimisation by starting with a low 
number of parameters (coarse grid). When this optimization has reached a plateau, a step 
size refinement is applied for a next iteration to achieve better performance. Such 
refinement procedure has been considered important in the improvement of direct 
optimization methods. Binder (2000) and Schlegel et al, (2005) used a local resolution 
based analysis to point out which control parameter needs to be refined further while 
Balsa-Canto et al. (2001) and Garcia et al. (2006) applied grid refinement throughout the 
trajectory.   

However, for process optimization, we found that there are several intervals where 
adjustment of the control parameter has no significant effect on the improvement of the 
performance index. These intervals can be excluded from further optimization. The 
selection uses a threshold value for the sensitivity (�s) which separates the control 
parameters into two groups: optu , with sensitivity above the threshold value and which will 
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be considered for refinement and further optimization, and constu , with a sensitivity below 
the threshold value and which are excluded from further optimization. Figure 2 illustrates 
the selection of control input based on its sensitivity.   

 

 
Figure 2. Selection of parameters for refinement based on the sensitivity 
 
 
The sensitivity (si) of each parameter input is given by: 
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with sk the sensitivity of parameter with index k, and εs the threshold value which fraction 
(rε) of the average sensitivity )( ks . In this work the sensitivities are numerically calculated 
by small perturbations for each individual parameter with δu =10-6. 
 
The threshold value is chosen such that the less sensitive parameters are separated from the 
parameters to be optimized. Here, the threshold value is linked to the mean sensitivity by 
multiplication with a proportionality factor (rε). The proportionality factor value is an 
indicator for the range below mean sensitivity; rε = 0 means that all input parameters are 
above the threshold value and therefore they are always refined and further optimized. 
Using the value rε = 0  corresponds to the work of Balsa-Canto (2001) and Garcia et al 
(2006). By increasing the rε  value more parameters will be transferred to the second group 
that is not optimized further.  

The optimization procedure is given by the following pseudo-algorithm. In the first step, 
the initial number of control parameter input (Nu) and their values )( 0u are defined together 
with the threshold parameter (rε), stopping criteria of optimization, and the maximum 

( )streshold ε  

( )is  

( 2 )constgroup u−  

( 1 )optgroup u−  

t  

u  

= ( )sensitivity value  = ( )input  
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number of refinement(lmax).  For the first iteration (l=1), all control parameters are above 
the threshold value and therefore they are all parameters to be optimized 0,( )opt

ku . The 
optimization is performed for this set of parameters and at the end the obtained parameters 
are evaluated for their sensitivity to performance index (see equations 3 and 4). After 
grouping by using the threshold value and sensitivity values, a new set of input parameters 
is obtained by doubling the number of parameters from previous iteration ll

uu NN 21 =+ . 
The new set of parameters optimized and will be subject for a following refinement. The 
procedure is repeated until lmax is reached. 
 
Pseudo Algorithm  
Choose number of input parameters, initial control profiles and final time: l

uN , 0u , tf 

Specify tolerances, and maximum number of refinement : TolMesh,TolFun, TolX,  rε, lmax 

   For ℓ=1,.. maxl  

   0 0,
k

opt
ku u⎡ ⎤= ⎣ ⎦  and [ ]0, ( )const

ku for initial iteration=  

   Do optimization problem with initial guess 0
ku , 

 store the optimal solution *, *,,ku Jl l  
               if max<l l  t hen 
                      Calculate si and εs 

                             (i) ( )*, ,opt
k k s ku s uε> →l l l  

                             (ii) ( )*, ,const
k k s ku s uε< →
l l l  

                                      refine : 1, , 1interp( , )τ+ +=l lopt opt l
k k ku u ,   

                                       1 1,opt
k ku u+ +=l l  , 1, ,l const l const

k ku u+ =  
                          Else 
                  Exit 
          end if 
    end for 
   → optimal solution: * *,,k kJ u l  
 
For optimization, a direct search by using Patternsearch from Matlabs’ optimization 
toolbox is applied. The method is normally used for highly nonlinear functions and if other 
direct gradient-based methods are not reliable anymore. Patternsearch operates from a set 
of points that form a pattern and it does not require derivatives to determine the descent 
direction. The pattern is reflected, expanded or shrunk, depending on whether any point 
within the pattern has a lower objective function value than the current point. The stopping 
criteria for the procedure are related to those characteristics. If the progress in optimization, 
expressed in terms of changes in the objective function (TolFun), and in changes of the 
mesh (TolMesh), and the changes in the parameters (TolX) is below the values as given in 
Table 1, the optimization ends.  
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Table 1 Setting of stopping criteria of patternsearch 
Options value 
TolMesh 10-4 
TolX 10-5 
TolFun 10-5  
SearchMethod Positive basis Np1 
Mesh Contraction 2  
Mesh refinement 0.3  

 

2.4. Evaluation of the procedure on a reference process 

For evaluation of the procedure a reference case on the optimal production of protein in a 
fed-batch reactor is used. This case was originally formulated by Park and Ramirez (1988). 
The objective of this case is to maximize the secreted heterologous protein by a yeast strain 
in a fed-batch culture. The model and its description are given in the work of Park and 
Ramirez (1988) and Balsa-Canto et al (2001). 

Luus (1995) applied dynamic programming while Banga et al (1998) used control vector 
parameterization without refinement to solve this optimization problem. The attained 
performance index values were J=32.686 and J=32.562, respectively. To test the effect of 
refinement to this particular case, we first did a single run optimization (i.e. without 
refinement) with 40 parameters. The result of this optimization (Figure 3) shows strong 
variations in values of the succeeding parameters which is the result of local optima of the 
solution. The calculation time was 35 minutes and the obtained performance index 
J=32.7297. 
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Figure 3 Single run optimization for optimal production of protein with a control vector 
parameterization by 40 parameters. 
 
In the refinement method the choice for the threshold value is important. Its value has 
effect on the obtained result and the parameters used during the refinement iterations. The 
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threshold is a fraction (rε) of the mean current sensitivity. Figure 4 gives the obtained value 
of the performance index and the final number of optimization parameters for threshold 
factors (rε) varying from 0 to 1. Increasing threshold factors reduce the number of 
parameters for optimization (uopt) and consequently lower computation time, but at the 
same time the final obtained performance index is reduced, meaning that the optimum 
solution is not attained. The threshold of rε =0, which mean all parameters are optimized, 
could give better performance index, however the computation time is high. Therefore, the 
choice for the threshold factor is recommended in the range rε =0.1-0.2.  

 
Figure 4. The effects of threshold factor (rε) variation to the final obtained value of the 
performance index (a) and the required computation time (logarithmic scale) (b)  
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Figure 5 Trajectories for optimal production of protein by using step size refinement 
with (rε=0,--) and (rε=0.15,-) from the mean sensitivity value.  
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Figure 5 shows the development of the input trajectories and the sensitivity values for 
(rε)=0 and 0.15 respectively. The first refinement iteration started with 5 parameters and 
after optimization the sensitivity of each parameter is still above the threshold value. Thus, 
all input parameters are refined and the number of parameters for the second refinement is 
doubled to 10. After optimization in the second refinement iteration, the sensitivity values 
are evaluated and now there is only one parameter with sensitivity below the threshold 
value. Therefore, in the third refinement step, the control input to be optimized (uopt) has 18 
parameters and one parameter is not optimized further. During the fourth iteration there are 
only 22 parameters to be optimized which make the computation time is less than full 
optimization and the result after this step is given in the last graph of Figure 5. 
 

Table 2. Computation time and performance index for optimal protein production 
optimization  

Iteration Refinement on all CVP-
points (rε=0) 

Refinement with threshold 
value (rε=0.15) 

Single run 

 optu  J tcpu (s) optu  J tcpu (s) optu  J 
1 5 31.5805 98 5 31.5805 98 40 32.7297 
2 10 32.1610 218 10 32.1612 218   
3 20 32.6412 376 18 32.6392 303   
4 40 33.0028 813 22 33.0032 451   

Total tcpu   1506   1071  2149 
optu : number of parameters for optimization in this step, J: performance index value, tcpu= 

computation time(s). Computation time on Intel Pentium M processor 1.40 GHz ,Matlab 7.0.  
 

 
The results in Table 2 show that the required computational time for the refinement based 
on threshold sensitivity method (rε=0.15) is favourable compared to the refinement with no 
threshold value (rε=0) as was used by Balsa-Canto et al., (2001) and Garcia et al., (2006). 
However, both refinements in Table 2 perform better than the single run optimization (40 
parameters, 2149 seconds) in terms of the performance index and computation time. 
Furthermore, comparing to previous studies (Balsa-Canto et al, 2001; Banga et al, 1998; 
Luus, 1995) an interesting improvement for the performance index is realized.  
 
 
3. Application to baking process 

In section 2.4 the method has been tested to a standard problem from literature in which the 
objective function was maximized, and now the method will be applied to bakery 
production (baking process) optimization, The general purpose of baking optimization is to 
minimize the deviation of final qualities from the aimed values.  

3.1 Formulation of baking optimization problem 

The objective of baking optimization is to find optimal heating strategies that result in the 
specified final product qualities. Baking can be performed by applying different heating 
inputs as: convective, radiation and microwave heating. Each heating input has a different 
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role in the improvement of baking performance. Convective heating is the most applied 
type; heat is transferred to the product surface and then penetrates into product by 
convection and conduction. Microwave heating generates heat inside the product. 
Radiation (usually infrared) directly heats the upper layer of the product, by exciting 
rotational/vibration modes in the present molecules. Hadiyanto et al., (2007b) showed that 
depending on the required final product quality, different optimal heating strategies can be 
found by optimization.  

For optimization the required final qualities have to be translated into a performance index. 
The following formulation is used to express the performance index. 

2
,

1
min .( ( ) )

N

i i f s i
i

J w x t x
=

= −∑      (6) 

where xs,i represent the setting values of the states (qualities) at the end of baking time, and 
iw  are weighting factors for each product quality. The results in this work are based on the 

setting values and weight factors as given in Table 3. Please note that while in the 
validation example of section 2.4 the objective function was maximized, we will here 
minimize the objective function. This does not give any differences in results or method. 

 

Table 3. Applied setting values for the final product qualities and weight factors 
Optimized quality (x) weight factor (wi) setting value (xs) 

brownness surface 1 [-] 0.8  

crispness surface  10 [-] 0.65  

water content centre  [kg/kg] 10 [(kg/kg)-2] 0.38  

temperature (surface) 0.0001 [(°C)2] 25°C 

 

 

3.2 Baking model development and assumptions  
The baking model concerns a series of three sequential processes:  

1. Heat and mass transfer of liquid water, water vapour and CO2,  
2. Product transformations 
3. Product quality development 

The full model was presented in previous work (Hadiyanto et al., 2007a); here the main 
equations are briefly discussed and presented in Appendix 1 (Table A1, A2 and A3). 
Discretization of 1-D in 10 segments was found to be satisfactory. This resulted in a system 
with 108 ordinary differential equations (ODEs) which were solved with integration 
procedures for stiff sets of ODEs (Matlabs’ ode15s or ode23s).  
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4.1. Heat and mass transfer 
The heat and mass balances for liquid water, water vapour and CO2 gas (eqs. A1-A4) 
follow from the laws for mass and energy conservation and include water evaporation, heat 
conduction, and heat fluxes due to internal convection during baking. The local changes of 
liquid water in the product are result of the diffusion and the evaporation rate (Iv).  For 
additional equations see appendix 1 tables 1a and 1b. 

4.2. State transformations  

The product extension (e) gives the change of size (height) compared to the initial height of 
the product (equation A5). The extension of height is based on Kelvins-Voight’ model for 
visco-elastic systems. Protein thermosetting reactions and starch state transformation from 
crystalline state into the gel state and reverse are the main transformations for product 
texture. Protein thermosetting reactions only solidify the network. Therefore, starch 
gelatinization and retrogradation are the main transformations relevant for textural 
properties. The changes of the degree of gelatinization are equal to the gelatinization rate 
(Zanoni et al., 1995) minus the retrogradation rate (equation A6).  Here is αmax the 
maximum attainable degree of gelatinization which is a function of the initial composition 
of the product, i.e. content of water (W), starch (S) and other water binding components 
(C) in dough (Hadiyanto et al., 2007a).  

Gelatinization occurs at higher temperatures and is faster than retrogradation. Therefore 
gelatinization takes place during baking and retrogradation during storage (staling of 
product). Additional equations are given in appendix 1 tables 1a and 1c. 
Browning of bakery products is mainly caused by the Maillard reaction which forms 
melanoidins as colouring compounds (eq A7). These reactions are zero order (van Boekel, 
2001) and the reaction rate depends on temperature and water content in the product (see 
also Table 1b)   
 
4.3. Product quality model 
Crumb (i.e. the open network structure in the centre of bread) is linked to the degree of 
starch gelatinization (Hadiyanto et al., 2007a). For a range of Dutch bakery products the 
relation between crumb and degree of gelatinization given by equation A8 is found. 
Crispness and softness of bakery products are linked to the difference between the current 
product temperature (Tr) and the glass transition temperature of the product (Tg). A product 
is crisp when Tr-Tg<0 (equation A9).  The glass transition temperature is a function of the 
product composition (see Table 1c). Softness is a combined function of Tr-Tg and the 
degree of gelatinisation.  Products are soft for Tr-Tg >0 but softness requires a minimum 
value of the degree of gelatinization above 0.3 (equation A10). 
The relation between brownness and the amount of melanoidins (me) is given by equation 
A11.  
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5. Results and Discussion 
5.1. Case 1: Baking using convective heating  

We first discuss baking with convective heating only. The set points for the quality 
attributes are given in Table 3. A single run optimization (l = 1) with 45 parameters and 
120°C as initial value for all parameters resulted in a computation time of around 5 hours. 
The obtained performance index is J = 0.0071432. The optimization result (Figure 6) 
shows several irregular peaks of the control input which are not expected for a continuous 
process. This phenomenon is common for CVP with a large number of parameters and 
illustrates that the final result is in a local minimum.  
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Figure 6 Single run optimization for convective baking with an input represented by 
45 parameters 
 
 
The procedure with refinement is started with 6 parameters and 120oC as initial values for 
the parameters. Two cases are considered, with rε = 0 and 0.2, respectively. Figure 7 gives 
the development of the input trajectories for convective heating and the sensitivity values 
used for refinement for the case rε = 0.2. For both cases the trajectories fall almost together 
and have a much more regular form than for the single run optimization. The convergence 
to optimal solution is illustrated by the decrease of the sensitivity values at each 
refinement.  
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Figure 7 Convective heating baking operation. Succeeding iterations for the 
optimization procedure with refinement for iteration 1 to 4. (–) with threshold value 
re = 0.2, (--) without threshold value (re = 0).  
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For a factor rε=0.2, similar trajectories are obtained as for rε=0 while the computation is 
almost halved (Table 4). The computation time is also about 4 times faster than that for a 
single run optimization. Moreover, compared to single run optimization the refinement 
procedure with a threshold factor rε=0.2 gives a clear improvement of the performance 
index.  
 
 

 
Table 4. Computational time and performance index for three different methods  

Iteration Refinement on all CVP-
points (rε=0) 

Refinement with threshold 
value (rε=0.2) 

Single run 

 optu  J tcpu (s) optu J tcpu (s) optu  J 
1 6 0.00718145 382 6 0.00718145 382 45 0.0071432 
2 12 0.00697551 869 6 0.00697542 537   
3 24 0.00692146 1718 12 0.00692135 1078   
4 48 0.00686000 4941 24 0.00684551 2245   

Total tcpu   7911   4243  18432 
optu : number of parameters for optimization in this step, J: performance index value, tcpu= 

computation time(s). Computation time on Intel Pentium M processor 1.40 GHz using Matlab 7.0.  
 
 
 
5.2. Case 2: Baking with multi-heating inputs 

Multi-heating baking is another application with setting values as given in table 3. The 
applied heating sources are convective heating, characterized by the oven temperature 
(Toven), radiation, characterized by the temperature of the radiating element (Trad) and 
microwave power (Pmw). The use of the three heating sources makes the baking system 
more flexible and can result in a better achievement of the product quality goals 
(Hadiyanto et al, 2007b).  

First, the multi-heating system is optimized by a single run optimization and applying 45 
parameters for each input, which results in a total of 135 of parameters for optimization 
(uopt). Trajectories are presented in Figure 8. The single run optimization results in a 
performance index of J = 0.003725 and required about 11 hours of computation time. The 
trajectories are more irregular than for the single input optimization and are not very 
intuitive for a continuous process. 
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Figure 8. Single run optimization for multi-heating baking. Each input is represented by 45 
parameters.  
 

In the case with only convective heating, we concluded that the refinement procedure with 
re = 0.2 performed best. Thus we only apply this procedure here. The results for the step 
size refinement are given in Figure 9 and Table 5.  

 

Figure 9 shows the development of the trajectories and the sensitivity values for four 
succeeding refinement steps. At the start, each input is represented by 6 parameters which 
results in a total of 18 parameters. This set of parameters can be optimized quickly. In the 
next refinement iteration only 6 input parameters with sensitivity above the threshold value 
are optimized (18 for total). This strongly reduces the computation time compared to a 
procedure in which all parameters are refined (36 parameters). 
 
Table 5 shows that finally 50% of the control parameters are selected for uopt. Control 
parameters in the first 1.25 hour are the most sensitive (uopt), while the rest are not sensitive 
and are not varied. Compared to the single run optimization, the refinement method gives a 
much better performance index (80% improved) and requires much less computation time 
(a factor 6 less). Moreover the trajectories have a more regular form that complies to the 
continuous nature of the process. 
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Figure 9. Succeeding iterations optimization procedure for multi-heating baking 
operation with refinement for iteration 1 to 4 and threshold factor rε=0.2.  
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Table 5. Results of optimization with refinement for multi-heating baking process. The 
optimization is performed with threshold factor rε=0.2 and compared to single run 
optimization. 
 

Iter( l )  Refinement with  rε=0.2 Single run 
 optu  J tCPU (s) optu  J 

1 18 0.00370194 785 45 0.0071432 
2 18 0.00205799 1264   
3 36 0.00156933 2057   
4 76 0.00144551 3245   

Total tcpu   7352  42078 
 

 
6. Conclusion  

The improvement of control vector parameterization in optimization by using sensitivity 
functions has been presented. Starting with a low number of parameters, the refinement 
method showed a significant reduction of computation time while the achieved 
performance index was still equal as compared to full control vector parameterization.  The 
refinement method used a threshold sensitivity to group input parameters. The reduction of 
the number of input parameters to be optimized (above threshold value) resulted in lower 
computational effort, and in this work it was found that the recommended threshold value 
is in the range of 10-20% of the mean sensitivity.  

Keeping computational time within limits becomes critical for larger complex systems.  A 
significant reduction of the computation time was achieved with convective and multi-
heating baking, including a heating and cooling period. The control parameters in the 
cooling period have minimal effect on the performance index and therefore these 
parameters were hardly considered in the optimisation procedure. The optimization 
focused itself on the heating period, by which the performance index is the most affected. 
Refinement gives a good estimate of the optimal process.  

The proposed control vector parameterization method has two-fold benefit. First, it is 
useful for optimization of the design and operation of large process systems, but also 
identifies critical control points in the production process, yielding more insight in what 
factors determine the quality of the product. For example, the layout and operation of 
complete or parts of complex food production systems, or even supply chains with long 
periods of cooling where product quality is not very sensitive to the settings, as long as 
they stay in a certain (low) region. Secondly, the method identifies the parameters that are 
most important to the product quality. This critical control point analysis will facilitate 
further study and improvement of the production system. 
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Annotations 

Symbol Description Unit 
aw Water activity [-] 
C Non-starch water binding components kg.kg-1 
Dv Gas diffusivity m2.s-1 
Dw Liquid diffusivity m2.s-1 
e Relative extension of height  [-] 
f Fusion factor [-] 

Ea Activation energy J.mol-1 
G Retrogradation rate constant s-1 
G0 Reference value for retrogradation rate s-1 
Hc Enthalpy of water vapour  J.kg-1 
Hv Enthalpy of CO2 gas J.kg-1 
hc Convective heat transfer coefficient Wm-2K-1 
hv Mass transfer coefficient m.s-1 
J Performance index [-] 
k Thermal conductivity of product Wm-1K-1 

Kg Constant [-] 
kme Reaction rate constant for Maillard reaction s-1 
ksoft Constant for gelatinization [-] 
kgel Rate constant for gelatinization  [-] 
kretro Rate constant for retrogradation [-] 
mv Mass flux of water vapour kg.m-2s-1 
me melanoidines [-] 
mc Mass flux of CO2 gas kg.m-2s-1 
Mw Molecular weight of water kg.kmol-1 
Nu Total number of input parameter [-] 
P Total pressure Pa 

P0,r Incident power of microwave Watt.m-3 
Pmw Microwave power Watt 
pv,sat Saturated pressure of water vapour Pa 
Rg Gas constant J.mol-1K-1 
R Height of product [m] 

RCO2 CO2 production rate kg.m-2.s-1 
S Sugar content kg.kg-1 
t Time  s 

T∞ Hypothetical temperature  K 
To Initial dough temperature K 
U* Activation energy for recrystallization J.mol-1 
Vc CO2 gas concentration kg.kg-1 
Vv Water vapour  kg.kg-1 
W Water content kg.kg-1 
Wo Initial water content kg.kg-1 
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Z Starch content kg.kg-1 
Τg Glass transition temperature K 
Τm Melting temperature K 
S/Z Ratio sugar and starch  [-] 
s Sensitivity  

uopt Input parameter subjected for optimized group  
uconst Input parameter subjected for constant group  

rε Factor of sensitivity threshold [-] 
lmax Maximum refinement iteration [-] 
tf Final time of processes [hrs] 
   

Greek letters 
α Total degree of starch gelatinization [-] 

αmax Maximum attainable degree of gelatinization  [-] 
α,mw Attenuation factor  [m-1] 

λ Evaporation heat J.kg-1 
ε Porosity [-] 
εs The threshold of sensitivity [-] 
υ Kinematic viscosity m2.s-1 
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Appendix 1 1 

Table 1a. Main equations for the baking model renumber the equations 

Laws of conservation 

Energy  
2

2
( ) ( )( , ) ( , ) ( , ) ( , ) ( , )

1 ( , )
v v c c

p v
m H m HT r t e r t T r tc k I r t Q r t

t e r t t r rr
ρλρ λ

∂ ∂∂ ∂ ∂
+ = − − − +

∂ + ∂ ∂ ∂∂
 (A1) 

Liquid water   
( , ) ( , ) ( , ) ( )

1 ( , ) w v
W r t W r t e r t WD I

t e r t t r r
ρρ ∂ ∂ ∂ ∂

+ = −
∂ + ∂ ∂ ∂

 (A2) 

Water vapour 
( , ) ( , ) ( , ) ( )

1 ( , ) vc v v
V r t V r t e r t VD m I

t e r t t r r
ρρ ∂ ∂ ∂ ∂

+ = − +
∂ + ∂ ∂ ∂

 (A3) 

CO2 
( , ) ( , ) ( , ) ( )

1 ( , )
c c

vc c c
V r t V r t e r t VcD m I

t e r t t r r
ρ

ρ
∂ ∂ ∂ ∂

+ = − +
∂ + ∂ ∂ ∂

 (A4) 

State transformations 

Product extension 
( , ) ( , ) atm

de r t Ee r t P P
dt

η + = −  (A5) 

Degree of gelatinization  max
( , ) ( ( , )) ( , )gel retro

d r t k r t k r t
dt

α α α α= − −  (A6) 

Melanoidine formation 
( , ) ( , )              e

me
dm r t k r t

dt
=     (Maillard reaction) (A7) 

Quality attributes 

 

0 ( , ) 0
( , ) 2 ( , ) ( , ) 0.5

1 ( , ) 0.5

if r t
crumb r t r t if r t

if r t

α
α α

α

=⎧
⎪= ≤⎨
⎪ >⎩

 (A8) 

 
0.0067.( ( , ))

( , )
1 exp(3.( ( , )))

r g

r g

T T r t
crispness r t

T T r t
=

−
−

+ −
 (A9) 

 
0.01.exp(3( ( , )))

( , )
1 exp(3.( ( , )))

r g
soft

r g

T T r t
softness r t k

T T r t
=

−
−

+ −
 (A10) 

 ( , )-0.23( )( , ) 1 - (1 (0)) r t
e

mebrownness r t m e= −

 

(A11) 
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Table 1b. Additional equations for the baking model 

Equation  
A1-A4 ( , )

( , ) ( , )v
c

V r t Pm
V r t V r t r

κ
ν

∂
= −

+ ∂
 

A1-A4 ( , )
( , ) ( , )

c
c

c

V r t Pm
V r t V r t r

κ
ν

∂
= −

+ ∂
 

A5 
v cP p p= +  

A1 
( )0,2

( , ) exp 2 ( )mw r
mw

RP
Q r t R r

r
α

α= − − , 
)(2

,0 RLR
P

rP mw

+
=

π
 

A1-A4,A7 1.05 ( , )
0.09 ( , )w

W r ta
W r t

=
+

 

A6 19

1

1390002.8.10 exp( )
( , )gelk

RX r t
−

=  

A7 *

0 1
--.exp exp 298

( ( , ) - ) ( , ). .
g o

retro
KUk G if X K

R T r t T T r t T f∞

⎡ ⎤ ⎡ ⎤
= <⎢ ⎥ ⎢ ⎥Δ⎢ ⎥ ⎣ ⎦⎣ ⎦

 

A7,A9,A10 

max

0 0.5( )
( -0.5 -0.5 ) 0.5( ) 0.5(3 )

1 0.5(3 )

if W S C
W S C if S C W S C

S
if S C W

α

< +⎧
⎪⎪= + < < +⎨
⎪

+ <⎪⎩

 

A7 
-3

3
exp(9 ) - 1 1( , ) 4.9 10 exp -               

( , ) 3632 10 exp(11.3 )
w a

me
w

a E
k r t

R T r ta

⎡ ⎤⎛ ⎞
= × × ⎢ ⎥⎜ ⎟

× + ⎢ ⎥⎝ ⎠⎣ ⎦
 

A10 
max

max
max

exp(500.( -0.3))3 10( ).
7 7 1+exp(500.( -0.3))softk αα

α
−

= +  

  
Initial and boundary condition for heat and mass transfer : 
Surface 
 
  
 
  
centre 
  

4 4( ( , )) ( ( , ) )c oven w r
r R r R

T Wk h T T R t D F T T R t
r r

λρ ε
= =

∂ ∂
− = − − + −

∂ ∂
 

( ( , ))v v ext
r R

VD h V V R t
r =

∂
− = −

∂
 

0 0
0v

r r

T Vk D
r r= =

∂ ∂
− = − =

∂ ∂
 

Initial T(0,t)=To, W(0,t)=Wo; 
 
Table 1c. Equation for glass transition and melting temperature 

( ) ( ) ( ) ( ) ( )
1 2

2 2 2 2
/ 3 4 5 6/ . / / /7g mT p p S Z p W p S Z W p S Z p W p S Z W= + + + + + +  

Parameters p1 p2 p3 p4 p5 p6 p7 
Tg 457.10 -396.32 -853.21 716.76 430.27 778.44 -1424.71 
Tm 472.69 -180.90 -519.97 419.63 124.46 471.87 -749.88 

 

 


