LAPORAN TUGAS AKHIR

PIROLISIS PEMBUATAN ASAM CAIR DARI

BONGGOL JAGUNG SEBAGAI PENGAWET

ALAMI PENGANTI FORMALIN

(Pyrolysis Making of Acid Liquid Natural Corncobs as a
Preservative Substitute Formalin)

Diajukan sebagai salah suatu syarat untuk menyelesaikan studi pada Program
Studi Diploma III Teknik Kimia
Program Diploma Fakultas Teknik
Universitas Diponegoro
Semarang

Disusun oleh:

RULLY RISTA RATNANINGTYAS
LOC 008 119

PROGRAM STUDI DIPLOMA III TEKNIK KIMIA
PROGRAM DIPLOMA FAKULTAS TEKNIK
UNIVERSITAS DIPONEGORO
SEMARANG
2012
INTISARI

Jagung (*Zea mays* L.) merupakan salah satu tanaman pangan dunia yang terpenting, selain gandum dan padi. Indonesia sebagai Negara agraris yang mayoritas penduduknya menjadikan jagung sebagai salah satu makanan pokok, serta produksi jagung yang merata di seluruh tanah air.

Percobaan pembuatan pengawetan bakso sapi dari asap cair bonggol jagung menggunakan variabel tetap yaitu berat bahan baku bong bong j agung sebanyak 3 kg. Variabel bebas yang digunakan adalah waktu yang digunakan yaitu 1 jam dan 2 jam. Dengan perolehan perolehan densitas 1,144 gr/ml dan 1,072 gr/ml, sedangkan viskositas 1,284 cp dan 1,1073 cp, untuk. Kemudian asap cair tersebut di uji organoleptiknya. Uji orgaleptik meliputi bau, bentuk, warna, serta rasa uji organoleptik dilakukan sampai hari ketujuh. Uji tersebut dengan menggunakan perbandingan bakso sapi yang telah diberi ile formalin.
Maize (*Zea mays* L.) is one of the world’s most important food crops, other than wheat and rice. Indonesia as a predominantly agricultural country as one made of corn a staple food, and corn production are evenly distributed throughout the country.

Pyrolysis is a process of conversion of organic materials at high temperatures and break down into smaller molecules bond. This process generates organic vapors, pyrolysis gases and charcoal. The resulting organic vapor containing carbon monoxide, methane, carbon dioxide, which is easy to evaporate and tar water. Organic vapor then condensed into a liquid. Known as the liquid pyrolysis bio-oil.

Trial manufacture of beef meatballs preservation of liquid smoke corn cobs using fixed variables, namely the weight of raw materials as much as 3 kg of corn bongo. The independent variable used is the time used is 1 hour and 2 hours. With acquisition density 1, 144 g / ml and 1, 072 g/ml, while viscosity 1, dan 1 cp 284, cp 1073, to. Then the liquid smoke in the test organoleptiknya. Organoleptik test covers the smell, shape, color, and a sense of organoleptic tests carried out until the seventh day. Test by using a comparison of beef meatballs that have been diberioleh formalin.
DAFTAR ISI

HALAMAN JUDUL .. i
HALAMAN PENGESAHAN .. ii
INTISARI ... iii
KATA PENGANTAR ... iv
DAFTAR ISI .. vi
DAFTAR GAMBAR .. xi
DAFTAR TABEL .. xii
DAFTAR LAMPIRAN ... xiv

BAB I. PENDAHULUAN

1.1 Latar Belakang ... 1
1.2 Rumusan Masalah ... 5

BAB II. TINJAUAN PUSTAKA

2.1 Pirolisis Biomassa ... 6
2.2 Jagung ... 8
2.2.1 Komposisi Biomassa Jagung .. 8
2.2.2 Kegunaan Biomassa Jagung ... 10
2.3 Pirolisis .. 11
2.4 Asap Cair .. 16
2.4.1 Komponen Senyawa Penyusun Asap Cair .. 19
2.4.2 Keuntungan Asap Cair .. 20
2.4.3 Perbandingan Asap Cair dan Formalin sebagai Bahan Pengawet Makanan .. 22
BAB III TUJUAN DAN MANFAAT

3.1 Tujuan .. 28
3.2 Manfaat .. 28

BAB IV PERANCANGAN ALAT

4.1 Hasil Perhitungan Dimensi Alat .. 29
4.2 Spesifikasi Perancangan Alat ... 29
4.3 Gambar dan Dimensi Alat .. 30
4.4 Prinsip Kerja .. 31

BAB V METODOLOGI

5.1 Alat dan Bahan Tugas Akhir ... 32
 5.1.1 Bahan ... 32
 5.1.2 Alat ... 32
5.2 Variabel Tugas Akhir ... 32
 5.2.1 Variabel Tetap .. 32
 5.2.2 Variabel Bebas ... 33
5.3 Variabel Tugas Akhir ... 33
 5.3.1 Persiapan Bahan ... 33
 5.3.2 Cara Kerja dengan Pirolisis .. 34
 5.3.3 Pengujian Asap Cair .. 35
BAB VI UTILITAS DAN PENGOLAHAN LIMBAH

6.1 Hasil Pengamatan

6.1.1 Tabel Hasil Pengamatan

6.1.2 Gambar Hasil Pengamatan

6.2 Hasil Uji Organoleptik

6.3 Hasil Perhitungan Pengujuan Alat

6.3.1 Perhitungan Densitas

6.3.2 Perhitungan Viskositas

6.3.3 Perhitungan Yield

6.4 Pembahasan

BAB VII KESIMPULAN DAN SARAN

7.1 Kesimpulan

7.2 Saran

DAFTAR PUSTAKA

LAMPIRAN
<table>
<thead>
<tr>
<th>Gambar</th>
<th>Deskripsi</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gambar 1</td>
<td>Perbedaan Pirolisis dan Gasifikasi</td>
<td>13</td>
</tr>
<tr>
<td>Gambar 2</td>
<td>Skema Pengolahan Biomassa</td>
<td>14</td>
</tr>
<tr>
<td>Gambar 3</td>
<td>Reaksi Formalin dengan Asam Amino</td>
<td>26</td>
</tr>
<tr>
<td>Gambar 4</td>
<td>Rangkaian Alat Pirolisis</td>
<td>30</td>
</tr>
<tr>
<td>Gambar 5</td>
<td>Asap Cair 1</td>
<td>38</td>
</tr>
<tr>
<td>Gambar 6</td>
<td>Asap Cair 1</td>
<td>38</td>
</tr>
<tr>
<td>Gambar 7</td>
<td>Alat Pirolisis</td>
<td>47</td>
</tr>
<tr>
<td>Gambar 8</td>
<td>Penampung Asap Cair</td>
<td>47</td>
</tr>
<tr>
<td>Gambar 9</td>
<td>Penampung Tar</td>
<td>47</td>
</tr>
<tr>
<td>Gambar 10</td>
<td>Sensor Suhu</td>
<td>47</td>
</tr>
</tbody>
</table>
DAFTAR TABEL

Tabel 1. Komposisi Kimia Biomassa Jagung ... 9
Tabel 2. Hasil Proximate dan Ultimate Biomassa Jagung 9
Tabel 3. Perbandingan Formalin dan Asap Cair .. 23
Tabel 4. Rataan Kandungan Gizi Bakso Sapi .. 25
Tabel 5. Alat yang Digunakan .. 32
Tabel 6. Hasil Pengamatan Pirolisis ... 37
Tabel 7. Hasil Uji Organoleptik .. 38
DAFTAR LAMPIRAN

Gambar 7. Alat Pirolisis ... 47
Gambar 8. Penampung Asap Cair ... 47
Gambar 9. Penampung Tar .. 47
Gambar 10. Sensor Suhu ... 47
BAB I
PENDAHULUAN

1.1. LATAR BELAKANG

Pengawet makanan termasuk dalam kelompok zat tambahan makanan yang bersifat inert secara farmakologik (efektif dalam jumlah kecil dan tidak toksis). Pengawet penggunaannya sangat luas, hampir seluruh industri mempergunakannya termasuk industri farmasi, kosmetik, dan makanan. Di bidang kesehatan termasuk farmasi penggunaan pengawet dibatasi jenis dan jumlah penggunaannya. Khusus untuk pengawet makanan peraturannya sesuai dengan Permenkes RI No 722/Menkes/Per/IX/88 (Hardman, 1988). Namun juga banyak pihak yang tidak bertanggung jawab menggunakan bahan pengawet yang dilarang oleh BPOM untuk makanan seperti formalin, yang biasanya digunakan bakso, tahu, ikan dengan alasan biaya murah dan produk keliatan lebih bagus dan tahan lebih lama. Penggunaan formalin dapat digantikan dengan asap cair, karna harganya yang cukup murah dan alami, penggunaannya ke produk pangan seperti ikan, bakso, tahu, mie dan produk pangan lain pun gampang, aman dan efektif jika digunakan sesuai dengan kadar yang telah ditentukan.

Senyawa kimia formaldehida (juga disebut metanal, atau formalin), merupakan aldehida dengan rumus kimia H₂CO, yang berbentuknya gas, atau cair yang dikenal sebagai formalin, atau padatan yang dikenal sebagai paraformaldehyde atau trioxane. Formaldehida awalnya disintesis
oleh kimiawan Rusia Aleksandr Butlerov tahun 1859, tapi diidentifikasi oleh Hoffman tahun 1867.

Pada umumnya formaldehida terbentuk akibat reaksi osidasi katalitik ada methanol. Oleh sebab itu, formaldehida bisa dihasilkan dari pembakaran bahan yang mengandung karbon dan terkandung dalam asap pada kebakaran hutan, knalpot mobil, dan asap tembakau. Dalam atmosfer bumi, formaldehida dihasilkan dari aksi cahaya matahari dan oksigen terhadap metana dan hidrokarbon lain yang ada di atmosfer. Formaldehida dalam kadar kecil sekali juga dihasilkan sebagai metabolit kebanyakan organisme, termasuk manusia.

Meskipun dalam udara bebas formaldehida berada dalam wujud gas, tetapi bisa larut dalam air (biasanya dijual dalam kadar larutan 37% menggunakan merk dagang 'formalin' atau 'formol'). Dalam air, formaldehida mengalami polimerisasi dan sedikit sekali yang ada dalam bentuk monomer H₂CO. Umumnya, larutan ini mengandung beberapa persen metanol untuk membatasi polimerisasinya. Formalin adalah larutan formaldehida dalam air, dengan kadar antara 10%-40%.

Meskipun formaldehida menampilkan sifat kimiawi seperti pada umumnya aldehida, senyawa ini lebih reaktif daripada aldehida lainnya. Formaldehida merupakan elektrofil, bisa dipakai dalam reaksi substitusi aromatik elektrofilik dan sanyawa aromatik serta bisa mengalami reaksi adisi elektrofilik dan alkena. Dalam keberadaan katalis basa, formaldehida bisa mengalami reaksi Cannizzaro, menghasilkan asam format dan metanol.
Formaldehida bisa membentuk trimer siklik, 1,3,5-trioksana atau polimer linier polioksimetilena. Formasi zat ini menjadikan sifat-sifat gas formaldehida berbeda dari sifat gas ideal, terutama pada tekanan tinggi atau udara dingin.

Formaldehida dapat digunakan untuk membasmi sebagian besar bakteri, sehingga sering digunakan sebagai disinfektan dan juga sebagai bahan pengawet. Sebagai disinfektan, dan dimanfaatkan sebagai pembersih; lantai, kapal, gudang dan pakaian.

Formaldehida juga dipakai sebagai pengawet dalam vaksinasi. Dalam bidang medis, larutan formaldehida dipakai untuk mengeringkan kulit, misalnya mengangkat kutil. Larutan dari formaldehida sering dipakai dalam membalsem untuk mematikan bakteri serta untuk sementara mengawetkan bangkai.

Untuk mensintesis bahan-bahan kimia, formaldehida dipakai untuk produksi alkohol polifungsional seperti pentaeritritol, yang dipakai untuk membuat cat bahan peledak. Turunan formaldehida yang lain adalah metilena difenil diisosianat, komponen penting dalam cat dan
busapoliuretana, serta heksametilena tetramina, yang dipakai dalam resin fenol-formaldehyda untuk membuat RDX (bahan peledak).

Sebagai formalin, larutan senyawa kimia ini sering digunakan sebagai insektisida serta bahan baku pabrik-pabrik resin plastik dan bahan peledak.

1.2. RUMUSAN MASALAH

1. Bagaimana teknik pembuatan asap cair dengan menggunakan bahan baku bonggol jagung.
2. Bagaimana meningkatkan kualitas asap cair dengan menggunakan bonggol jagung.
3. Pengaruh pemberian asap cair terhadap kualitas bahan makanan.

Email : tyascute73@yahoo.com