KATA PENGANTAR

Segala puji syukur kami panjatkan kehadirat Allah SWT, Rabb semesta alam atas segala rahmat dan Hidayah-Nya sehingga kami dapat menyelesaikan Laporan Tugas Akhir “Perencanaan Pengendalian Pantai di Muara Sungai Pemali”.

Laporan Tugas Akhir ini disusun untuk memenuhi salah satu persyaratan menyelesaikan studi pada program Strata-1 (S1) Reguler Jurusan Teknik Sipil Fakultas Teknik Universitas Diponegoro. Melalui tugas Akhir ini, diharapkan mahasiswa akan semakin mempunyai keterampilan dan keahlian yang lebih dalam mempraktekkan ilmu dan pengetahuan yang telah didapatkan melalui perkuliahan.

Pada kesempatan ini, perkenankanlah kami menghaturkan terima kasih kepada berbagai pihak yang telah membantu kami baik itu berupa tenaga, pemikiran, biaya maupun saran-saran yang turut mendukung kelancaran penyusunan Tugas Akhir ini, dengan penuh rasa hormat kami menyampaikan terima kasih kepada:

1. Ibu Ir. Sri Sangkawati, MS, selaku Ketua Jurusan Teknik Sipil Fakultas Teknik Universitas Diponegoro serta dosen pembimbing Tugas Akhir kami.
2. Bapak Ir. Pranoto Samto A, Dipl. HE., MT, selaku dosen pembimbing Tugas Akhir yang telah memberikan bimbingan dan pengarahan selama pengerjaan tugas akhir.
3. Bapak Ir. Salamun, MS, selaku dosen wali kami.
4. Orang tua dan seluruh keluarga besar kami, untuk segala doa restu yang tak henti-hentinya terucap untuk kesuksesan kami.
5. Sahabat-sahabat dan teman-teman jurusan Teknik Sipil atas bantuan, kerjasama, persahabatan serta dukungannya selama ini.
7. Semua pihak dan instansi yang telah banyak membantu kami, baik secara moril maupun materiil, yang tak dapat disebutkan satu persatu.

Tiada gading yang tak retak. Setiap hal yang telah dilakukan bahkan dengan penuh kerja keras pun terkadang menghasilkan sesuatu yang jauh dari kesempurnaan, begitu pula dengan penyelesaian Tugas Akhir ini, yang tentunya tak luput dari kesalahan dan kekurangan, serta masih jauh dari kesempurnaan. Oleh karena itu kritik dan saran yang bersifat membangun sangat kami harapkan.

Semoga Tugas Akhir kami ini dapat memberikan manfaat bagi perkembangan ilmu pengetahuan dan teknologi serta dapat dimanfaatkan oleh semua pihak yang membutuhkan.

Semarang, November 2009

Penulis
DAFTAR ISI

HALAMAN JUDUL ... i
LEMBAR PENGESAHAN .. ii
KATA PENGANTAR .. iii
DAFTAR ISI ... v
DAFTAR TABEL .. x
DAFTAR GAMBAR .. xiii
DAFTAR LAMPIRAN .. xvii

BAB I PENDAHULUAN
1.1 Latar Belakang ... 1
1.2 Maksud dan Tujuan Perencanaan ... 2
1.3 Lokasi Perencanaan ... 2
1.4 Sistematika Penulisan .. 3

BAB II STUDI PUSTAKA
2.1 Tinjauan Umum .. 5
2.2 Aspek Hidrologi ... 5
 2.2.1 Daerah Aliran Sungai ... 6
 2.2.2 Curah Hujan Rencana .. 6
 2.2.2.1 Curah Hujan Area ... 6
 2.2.2.2 Curah Hujan Harian Rata-Rata .. 10
2.2.3 Perhitungan Curah Hujan Rencana ... 10
2.2.4 Intensitas Curah Hujan .. 28
2.2.5 Debit Banjir Rencana .. 31
 2.2.5.1 Metode Der Weduwen ... 31
 2.2.5.2 Metode Hasper .. 31
 2.2.5.3 Metode FSR Jawa dan Sumatra ... 33
2.2.5.4 Hidrograf Satuan Sintetik GAMA I .. 35
2.2.6 Analisis Sedimen .. 40
 2.2.6.1 Tinjauan Umum ... 40
 2.2.6.2 Metode Der Weduwen ... 40
 2.2.6.3 Metode Hasper ... 41
 2.2.6.4 Metode FSR Jawa dan Sumatra .. 42
 2.2.6.5 Hidrograf Satuan Sintetik GAMA I .. 44

v
BAB III METODOLOGI

3.1 Tinjauan Umum .. 118
3.2 Pengumpulan Data
3.2.1 Data Primer
3.2.2 Data Sekunder
3.3 Metodologi Pengendalian Kerusakan Muara Sungai Pemali
3.4 Bagan Alir Tugas Akhir

BAB IV KONDISI EXISTING DAN LOKASI PERENCANAAN
4.1 Umum
4.2 Kondisi Existing Sungai Pemali
4.3 Kondisi Existing Muara Sungai Pemali
4.4 Kondisi Existing Pantai Muara Sungai Pemali
4.5 Kondisi DAS Sungai Pemali

BAB V ANALISIS DATA
5.1 Tinjauan Umum
5.2 Analisa Hidrologi
5.2.1. Penentuan Daerah Aliran Sungai
5.2.2. Curah Hujan Maksimum Harian Rata-rata DAS
5.2.3. Analisis Frekuensi Curah Hujan Rencana
5.2.4. Pemilihan Sebaran
5.2.5. Uji Kecocokan Sebaran
5.2.6. Perhitungan Curah Hujan Metode Terpilih (Metode Log Person III)
5.2.7. Debit Banjir Rencana
5.3. Analisa Hidro-oceanografi
5.3.1. Analisa Data Angin
5.3.2. Pasang Surut
5.3.3. Peramalan Gelombang Angin
5.3.4. Tinggi Muka Air laut Rencana
5.3.5. Sedimentasi
5.4 Analisa Data Tanah
5.5 Analisa Hidrolika
BAB VI PENYEBAB KERUSAKAN DAN PENANGANAN
6.1 Penyebab Kerusakan Sungai Pemali .. 174
6.2 Penyebab Kerusakan Muara Sungai Pemali .. 174
6.3 Penyebab Kerusakan Pantai disekitar Muara S.Pemali ... 176
6.4 Penanganan Kerusakan .. 176

BAB VII PERENCANAAN DAN DESAIN KONTRUKSI BANGUNAN
7.1 Penangana Sungai Pemali .. 178
7.2 Desain Bangunan di Muara Sungai Pemali .. 181
 7.2.1. Perhitungan Elevasi Puncak Bangunan ... 181
 7.2.2. Tinggi Bangunan .. 183
 7.2.3. Berat Butir Lapis Pelindung ... 183
 7.2.4. Menghitung Tebal Lapis Pelindung .. 186
 7.2.5. Lebar Puncak Bangunan ... 186
 7.2.6. Pelindung Kaki ... 187
 7.2.7. Jumlah Butir Per Satuan Luas (N) .. 188
 7.2.8. Cek Stabilitas Daya Dukung Tanah Dasar ... 190
 7.2.9. Cek Setlement ... 193
 7.2.10. Spesifikasi Tetrapod .. 198
7.3 Desain Bangunan Pelindung Pantai ... 200
 7.2.1. Perhitungan Elevasi Puncak Bangunan ... 200
 7.2.2. Tinggi Bangunan .. 203
 7.2.3. Berat Butir Lapis Pelindung ... 203
 7.2.4. Menghitung Tebal Lapis Pelindung .. 204
 7.2.5. Lebar Puncak Bangunan ... 204
 7.2.6. Pelindung Kaki ... 205
 7.2.7. Jumlah Butir Per Satuan Luas (N) .. 206
 7.2.8. Cek Stabilitas Struktur Revetment .. 208
 7.2.9. Cek Setlement ... 210

BAB VIII RENCANA KERJA DAN SYARAT
8.1 Syarat-syarat Umum dan Administrasi ... 213
 8.1.1 Ketentuan dan Persyaratan Umum ... 213
BAB IX RENCANA ANGGARAN BIAYA

9.1 Umum ... 256
9.2 Daftar Harga Satuan Upah Tenaga, Bahan, dan Alat 256
9.3 Analisis Harga Satuan Pekerjaan ... 258
9.4 Perhitungan Volume Pekerjaan ... 270
 9.4.1 Pekerjaan Kontruksi Jetty ... 270
 9.4.2 Pekerjaan Revetment ... 291
 9.4.3 Pekerjaan Perkuatan Lereng pada Muara 295
9.5 Rencana Anggaran Biaya ... 296
9.6 Jadwal Proyek .. 298
9.7 Jaringan Kerja (Network Planning) .. 298

BAB X PENUTUP

10.1 Kesimpulan .. 300
10.2 Saran ... 301

DAFTAR PUSTAKA ... 302
DAFTAR TABEL

2.1 Pedoman pemilihan sebaran ... 14
2.2 Reduce Mean (Yn) untuk metode sebaran Gumbel tipe I 15
2.3 Reduce Standartd Deviation (Sn) untuk metode sebaran Gumbel tipe I 16
2.4 Reduce Variate (YT) untuk metode sebaran Gumbel tipe I 16
2.5 Harga K untuk metode sebaran Log Person III 18
2.6 Wilayah luas daerah kurva normal ... 20
2.7 Penentuan nilai K pada sebaran Normal .. 23
2.8 Standar Variabel (K_T) untuk metode sebaran Log Normal 24
2.9 Nilai X² Kritis untuk uji kecocokan Chi-square 26
2.10 Nilai D0 kritis untuk uji kecocokan Smirnov-Komogerof....................... 28
2.11 Growth Faktor (GF) ... 35
2.12 Koefisien kekasaran sungai alam ... 50
2.13 Hubungan debit- tinggi jagaan ... 52
2.14 Skala Beanfort ... 55
2.15 Berat jenis udara sebagai fungsi temperatur (T) 61
2.16 Koefisien tekanan angin pada suatu objek ... 62
2.17 Data angin pada rata-rata tahun 2007 kabupaten Brebes 63
2.18 Klasifikasi gelombang menurut kedalaman relative 66
2.19 Data gelombang diperairan Semarang tanggal 1 Januari 1989 68
2.20 Koefisien refleksi ... 73
2.21 Rumus transport sedimen sepanjang pantai ... 95
2.22 Keuntungan dan kerugian tipe bangunan laut 112
2.23 Kelebihan dan kekurangan berbagai material bangunan pantai 113
5.1 Luas pengaruh stasiun terhadap DAS pemali ... 132
5.2 Hujan harian maksimum rata-rata .. 134
5.3 Persyaratan metode sebaran ... 136
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4</td>
<td>Perhitungan distribusi curah hujan dengan sebaran normal</td>
<td>137</td>
</tr>
<tr>
<td>5.5</td>
<td>Perhitungan distribusi curah hujan dengan sebaran log person III</td>
<td>137</td>
</tr>
<tr>
<td>5.6</td>
<td>Metode chi-kuadrat</td>
<td>139</td>
</tr>
<tr>
<td>5.7</td>
<td>Perhitungan uji sebaran Smirnov –Kologorov</td>
<td>140</td>
</tr>
<tr>
<td>5.8</td>
<td>Koef. Sebaran metode sebaran normal</td>
<td>141</td>
</tr>
<tr>
<td>5.9</td>
<td>Curah hujan rencana metode sebaran normal untuk periode ulang T tahun</td>
<td>141</td>
</tr>
<tr>
<td>5.10</td>
<td>Perhitungan debit banjir rencana metode Hapers</td>
<td>144</td>
</tr>
<tr>
<td>5.11</td>
<td>Debit banjir rencana periode T tahun metode de Weduwen</td>
<td>147</td>
</tr>
<tr>
<td>5.12</td>
<td>Faktor reduksi luas ARF</td>
<td>148</td>
</tr>
<tr>
<td>5.13</td>
<td>Hasil perhitungan dengan metode FSR jawa-sumatra</td>
<td>149</td>
</tr>
<tr>
<td>5.14</td>
<td>Perhitungan resesi unit hidrograf</td>
<td>149</td>
</tr>
<tr>
<td>5.15</td>
<td>Rekapitulasi debit dari metode Gama I</td>
<td>153</td>
</tr>
<tr>
<td>5.16</td>
<td>Rekapitulasi debit banjir rencana</td>
<td>153</td>
</tr>
<tr>
<td>5.17</td>
<td>Data angin kec.rata-rata dan arah angin dominan</td>
<td>154</td>
</tr>
<tr>
<td>5.18</td>
<td>Panjang Fetch efektif</td>
<td>157</td>
</tr>
<tr>
<td>5.19</td>
<td>Perhitungan kecepatan gelombang arah dominan</td>
<td>158</td>
</tr>
<tr>
<td>5.20</td>
<td>Peramalan tinggi dan periode gelombang arah dominan</td>
<td>159</td>
</tr>
<tr>
<td>5.21</td>
<td>Tinggi dan periode gelombang</td>
<td>160</td>
</tr>
<tr>
<td>5.22</td>
<td>Hasil pengujian laboratorium data tanah</td>
<td>167</td>
</tr>
<tr>
<td>7.1</td>
<td>Daftar harga KAΔ (koef. Lapis)</td>
<td>185</td>
</tr>
<tr>
<td>7.2</td>
<td>Koefisien stabilitas (K_D) untuk bebagai jenis butiran</td>
<td>185</td>
</tr>
<tr>
<td>7.3</td>
<td>Hasil nilai Terzaghi</td>
<td>191</td>
</tr>
<tr>
<td>7.4</td>
<td>Perhitungan settlement jetty bagian kepala</td>
<td>195</td>
</tr>
<tr>
<td>7.5</td>
<td>Perhitungan settlement jetty bagian lengan</td>
<td>197</td>
</tr>
<tr>
<td>7.6</td>
<td>Spesifikasi tetrapod untuk bangunan jetty</td>
<td>199</td>
</tr>
<tr>
<td>7.7</td>
<td>Perhitungan gaya yang bekerja pada revetment</td>
<td>204</td>
</tr>
<tr>
<td>7.8</td>
<td>Perhitungan settlement revetment</td>
<td>212</td>
</tr>
<tr>
<td>9.1</td>
<td>Daftar Harga Sewa Alat</td>
<td>256</td>
</tr>
<tr>
<td>9.2</td>
<td>Daftar Harga Satuan Material</td>
<td>257</td>
</tr>
</tbody>
</table>
9.3 Daftar Harga Satuan Upah tenaga kerja ... 257
9.4 Perhitungan Analisa Harga Satuan pekerjaan ... 258
9.5 Perhitungan rencana anggaran biaya ... 295
<table>
<thead>
<tr>
<th>DAFTAR GAMBAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Lokasi Tugas Akhir ... 3</td>
</tr>
<tr>
<td>2.1 Metode polygon Thiessen ... 8</td>
</tr>
<tr>
<td>2.2 Metode Isohyet ... 10</td>
</tr>
<tr>
<td>2.3 Koefisien kurtosis ... 13</td>
</tr>
<tr>
<td>2.4 Sketsa hidrograf satuan sintetik Gama I ... 36</td>
</tr>
<tr>
<td>2.5 Sketsa penetapan WF .. 38</td>
</tr>
<tr>
<td>2.6 Sketsa penetapan RUA .. 38</td>
</tr>
<tr>
<td>2.7 Gambaran dari persamaan energy .. 47</td>
</tr>
<tr>
<td>2.8 Metode HEC-RAS tentang kekasaran dasar saluran 48</td>
</tr>
<tr>
<td>2.9 Flow chart program HEC-RAS ... 49</td>
</tr>
<tr>
<td>2.10 Saluran penampang tunggal ... 51</td>
</tr>
<tr>
<td>2.11 Saluran penampang ganda ... 52</td>
</tr>
<tr>
<td>2.12 Proses terjadi angin ... 54</td>
</tr>
<tr>
<td>2.13 Sifat-sifat pemantulan/penyerapan sinar matahari terhadap daratan dan lautan 55</td>
</tr>
<tr>
<td>2.14 Metode Aristotelia ... 56</td>
</tr>
<tr>
<td>2.15 Kecepatan rotasi bumi ... 56</td>
</tr>
<tr>
<td>2.16 Angin pasat .. 57</td>
</tr>
<tr>
<td>2.17 Angin anti pasat .. 58</td>
</tr>
<tr>
<td>2.18 Peredaran Udara di Bumi ... 59</td>
</tr>
<tr>
<td>2.19 Perubahan Aliran Angin pada Hulu dan Hilir 60</td>
</tr>
<tr>
<td>2.20 Wind Rose dari table 2.17 .. 64</td>
</tr>
<tr>
<td>2.21 Sket definisi gelombang sinusoidal ... 65</td>
</tr>
<tr>
<td>2.22 Gelombang air dangkal dan gelombang air dalam 66</td>
</tr>
<tr>
<td>2.23 Refraksi gelombang .. 69</td>
</tr>
<tr>
<td>2.24 Refraksi gelombang pada kontur lurus dan sejajar 70</td>
</tr>
<tr>
<td>2.25 Difraksi gelombang dibelakang rintangan 71</td>
</tr>
</tbody>
</table>
2.26 Profil muka air di depan bangunan vertical ... 72
2.27 Tinggi gelombang pecah .. 75
2.28 Kedalaman gelombang pecah .. 76
2.29 Pencatatan gelombang disuatu tempat ... 78
2.30 Hubungan antara kecepatan angin di laut dan di darat.. 79
2.31 contoh perhitungan *fetch* efektif didaerah pantai Semarang............................... 80
2.32 Peramalan gelombang .. 81
2.33 Proses terjadi tsunami .. 83
2.34 Daerah rawan tsunami di Indonesia ... 83
2.35 Wave set up dan wave set down .. 89
2.36 Perkiraan Kenaikan Muka air laut ... 85
2.37 Tipe pasang surut ... 87
2.38 Macam permukaan air laut yang digunakan sebagai titik referensi 88
2.39 Pemasangan rambu pasang surut mencakup LLWL sampai HHWL 90
2.40 Kurva pasang surut bulan Januari 2000 dan elevasi muka air di pantai Semarang 91
2.41 Definisi daerah yang dilalui gelombang ... 92
2.42 arus di dekat pantai ... 93
2.43 Imbang sedimen pantai .. 96
2.44 Pola sedimen muara sungai yang didominasi gelombang 98
2.45 Pola sedimen muara yang didominasi debit banjir .. 99
2.46 Pola sedimen yang didominasi pasang surut ... 99
2.47 Estuari sudut asin ... 100
2.48 Estuari tercampur sebagian .. 101
2.49 Estuari tercampur sempurna .. 101
2.50 Bangunan pantai sisi miring .. 106
2.51 Bangunan pantai sisi tegak .. 107
2.52 Sketsa Kontruksi tembok laut .. 107
2.53 Tampak atas kontruksi revetment ... 108
2.54 Kontruksi revetment .. 108
2.55 Tampak atas kontruksi groin .. 109
2.56 Tampak memanjang dan melintang groin dari tumpukan batu 109
2.57 Kontruksi krib sejajar pantai ... 110
2.58 Sketsa kontruksi tanggul laut ... 110
2.59 Macam-macam bentuk jetty ... 114
2.60 Sedimentasi dan erosi pada bagian kanan dan kiri jetty 116
4.1 Kondisi permasalahan di muara pantai sungai Pemali 129
4.2 Foto udara muara pantai sungai Pemali .. 129
5.1 DAS sungai Pemali ... 131
5.2 Luas Pengaruh tiap stasiun pada DAS Pemali ... 132
5.3 Sketsa Penentuan Jumlah dan Pertemuan sungai ... 150
5.4 Grafik Hidrograf satuan sintetik (HSS) Gama .. 152
5.5 Wind Rose kecepatan angin rata-rata di sekitar lokasi 154
5.6 Grafik pengamatan pasang surut muara sungai Pemali 155
5.7 Tingkatan elevasi muka air laut .. 156
5.8 Fetch efektif barat laut ... 156
5.9 Hubungan antara kecepatan angin dilaut dan di darat 158
5.10 Grafik Penentuan tinggi gelombang pecah .. 163
5.11 Grafik Penentuan kedalaman gelombang pecah ... 163
5.12 Perkiraan kenaikan muka air laut .. 165
5.13 Titik lokasi pengambilan sampel tanah .. 167
5.14 Input geometri aliran sungai sejauh 1km .. 168
5.15 Penampang sta 0+00 – 0+100 ... 168
5.16 Penampang sta 0+200 – 0+400 .. 169
5.17 Penampang sta 0+500 – 0+700 .. 170
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.18</td>
<td>Penampang sta 0+800 – 0+900</td>
<td>171</td>
</tr>
<tr>
<td>5.19</td>
<td>Model long section dari HEC-RAS Pemali</td>
<td>171</td>
</tr>
<tr>
<td>5.20</td>
<td>Elevasi yang terjadi pada debit max saat pasang</td>
<td>172</td>
</tr>
<tr>
<td>5.21</td>
<td>E elevasi yang terjadi pada debit max saat surut</td>
<td>172</td>
</tr>
<tr>
<td>5.22</td>
<td>Elevasi yang terjadi pada debit min saat pasang</td>
<td>173</td>
</tr>
<tr>
<td>5.23</td>
<td>Elevasi yang terjadi pada debit max saat surut</td>
<td>173</td>
</tr>
<tr>
<td>6.1</td>
<td>Proses sedimen dari pantai yang masuk ke sungai</td>
<td>175</td>
</tr>
<tr>
<td>6.2</td>
<td>Terjadi pelebaran mulut muara sungai Pemali</td>
<td>175</td>
</tr>
<tr>
<td>6.3</td>
<td>Terjadi abrasi di sisi kanan muara</td>
<td>176</td>
</tr>
<tr>
<td>6.4</td>
<td>Tampak atas kontruksi revetment</td>
<td>177</td>
</tr>
<tr>
<td>7.1</td>
<td>Grafik Hjustrom</td>
<td>179</td>
</tr>
<tr>
<td>7.2</td>
<td>Grafik hubungan antara debit dan waktu</td>
<td>180</td>
</tr>
<tr>
<td>7.3</td>
<td>Grafik run up gelombang</td>
<td>182</td>
</tr>
<tr>
<td>7.4</td>
<td>Sketsa tampak atas jetty</td>
<td>184</td>
</tr>
<tr>
<td>7.5</td>
<td>Bagian-bagian jetty</td>
<td>187</td>
</tr>
<tr>
<td>7.6</td>
<td>Potongan melintang jetty bagian kepala</td>
<td>189</td>
</tr>
<tr>
<td>7.7</td>
<td>Potongan melintang jetty bagian lengan</td>
<td>189</td>
</tr>
<tr>
<td>7.8</td>
<td>Dimensi tetrapod</td>
<td>199</td>
</tr>
<tr>
<td>7.9</td>
<td>Sedimen dan abrasi yang terjadi pada pantai disekitar muara</td>
<td>200</td>
</tr>
<tr>
<td>7.10</td>
<td>Grafik perhitungan gelombang pecah rencana di kaki bangunan</td>
<td>201</td>
</tr>
<tr>
<td>7.11</td>
<td>Grafik run up gelombang</td>
<td>202</td>
</tr>
<tr>
<td>7.12</td>
<td>Pelindung kaki bangunan</td>
<td>205</td>
</tr>
<tr>
<td>7.13</td>
<td>Angka stabilitas N_S untuk pondasi dan pelindung kaki</td>
<td>206</td>
</tr>
<tr>
<td>7.14</td>
<td>Sketsa penampang melintang revetment</td>
<td>207</td>
</tr>
<tr>
<td>9.1</td>
<td>Potongan Melintang Jetty</td>
<td>270</td>
</tr>
<tr>
<td>9.2</td>
<td>Pekerjaan crucuk bambu</td>
<td>271</td>
</tr>
<tr>
<td>9.3</td>
<td>Pekerjaan crucuk bamboo untuk bagian kepala</td>
<td>272</td>
</tr>
</tbody>
</table>
DAFTAR LAMPIRAN

LAMPIRAN DATA
LAMPIRAN GAMBAR
LAMPIRAN SURAT-SURAT