BAB IV
ANALISA DATA

4.1 TINJAUAN UMUM

Dalam proses perencanaan jembatan, setelah dilakukan pengumpulan data primer maupun sekunder, dilanjutkan dengan evaluasi data, berikutnya dilakukan analisis untuk penentuan tipe, bentang, maupun kelas jembatan dan lain-lain serta melakukan perhitungan detail jembatan. Langkah-langkah yang dilakukan meliputi:

1. Analisa topografi
2. Analisa lalu lintas
3. Analisa hidrologi
4. Analisa tanah
5. Pemilihan altenatif jembatan

4.2 ANALISA TOPOGRAFI

Dari pengamatan langsung di lapangan, penulis dapat menyimpulkan bahwa keadaan topografi di lokasi jembatan mempunyai keadaan tanah yang datar. Sedangkan dari pengamatan terhadap gambar kerja dari PU dapat disimpulkan keadaan struktur jembatan yang lama yakni:

1. Lokasi jembatan berada pada belokan alur sungai
2. Lebar sungai ± 60 m.
3. Elevasi dasar sungai + 6,718 m
4. Bentang jembatan ± 100 m
5. Lebar total DAS ± 375 m

4.3 ANALISA LALU LINTAS

Analisa data lalu lintas di sini meliputi penentuan kelas jalan, kelas jembatan dan lebar jalan jembatan.

4.3.1 Data Lalu Lintas

Pada tahap perncanaan jembatan data yang diperoleh diolah terlebih dahulu lalu kemudian dilakukan analisa untuk menentukan alternatif-alternatif pemecahan
terhadap masalah yang dihadapi. Data Lalu lintas Harian Rata-rata/ LHR yang diperoleh dari Dinas Bina Marga Propinsi Jawa Tengah tahun 2001 sampai 2006 adalah:

Tabel 4.1 Data Lalu Lintas Tahun 2001-2006 Ruas Jalan Semarang – Pati

<table>
<thead>
<tr>
<th>TAHUN</th>
<th>0,25</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>2,5</th>
<th>2,5</th>
<th>3</th>
<th>7</th>
<th>LHR smp</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>14859</td>
<td>2559</td>
<td>3082</td>
<td>1829</td>
<td>519</td>
<td>846</td>
<td>374</td>
<td>4573</td>
<td>28641</td>
</tr>
<tr>
<td>2002</td>
<td>11681</td>
<td>2744</td>
<td>3073</td>
<td>1989</td>
<td>680</td>
<td>1154</td>
<td>1243</td>
<td>3681</td>
<td>37302</td>
</tr>
<tr>
<td>2003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2004</td>
<td>3127</td>
<td>4122</td>
<td>4770</td>
<td>3173</td>
<td>4782</td>
<td>5022</td>
<td>6540</td>
<td>-</td>
<td>31535</td>
</tr>
<tr>
<td>2005</td>
<td>3409</td>
<td>4986</td>
<td>5172</td>
<td>4129</td>
<td>5607</td>
<td>7440</td>
<td>8724</td>
<td>51922</td>
<td>91389</td>
</tr>
<tr>
<td>2006</td>
<td>6883</td>
<td>2574</td>
<td>2474</td>
<td>1177</td>
<td>1957</td>
<td>5961</td>
<td>1105</td>
<td>16590</td>
<td>38720</td>
</tr>
</tbody>
</table>

4.3.2 Kelas Jalan

Pada tabel di atas, data lalu lintas (LHR) tahun 2001-2006 ruas jalan Semarang – Pati, menunjukkan nilai smp rata-rata > 20.000 smp (PPGJR No13 1970), sehingga termasuk kategori jalan kelas I primer

4.3.3 Kelas Jembatan

Karena ruas jalan Semarang – Pati termasuk jalan kelas I, maka kelas jembatannya adalah kelas B.

4.3.4 Lebar Jembatan

Menurut “Standard Steel Bridging For Indonesia” PU Bina Marga Republik Indonesia, jembatan kelas B mempunyai lebar perkerasan sebesar 6 m dan lebar trotoar sebesar 2*0,5 m, sehingga lebar keseluruhan jembatan adalah 6+(2*0,5) = 7m

4.3.5 Jumlah Lajur

Karena lebar perkerasan 6 m, maka lebar lajur adalah 2*3,50 m. atau sesuai dengan PPGJR No 13 1970, lebar lajur lalu lintas normal untuk jalan kelas I, IIA dan IIB diambil 3,50 m.
4.4 ANALISA HIDROLOGI

Data hidrologi di butuhkan untuk menentukan besarnya debit banjir pada suatu sungai. Dari besarnya debit banjir yang terjadi kemudian ditentukan muka air tertinggi, sehingga dapat ditentukan freeboard jembatannya.

4.4.1 Ketersediaan Data

Besarnya debit banjir rencana dapat ditentukan dengan beberapa metode sesuai dengan data yang tersedia untuk perhitungan debit banjir tersebut. Muka air sungai di lokasi jembatan Kali Ngantru ditentukan oleh muka air sungai di bendung Glapan, sehingga untuk mencari besar debit banjir sungai dapat ditentukan oleh besarnya debit limpasan pada bendung tersebut.

Data yang tersedia dan digunakan dalam penentuan debit banjir rencana dalam laporan ini adalah data-data debit banjir puncak tahunan yang tercatat dari pos pengamatan debit di bendung tersebut dari tahun 1955-2004

<table>
<thead>
<tr>
<th>NO</th>
<th>TAHUN</th>
<th>TGL/BLN</th>
<th>SPB</th>
<th>LIMPAS (m)</th>
<th>DEBIT (m³/dt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1955</td>
<td>20 Nop</td>
<td>18,18</td>
<td>2,52</td>
<td>416,55</td>
</tr>
<tr>
<td>2</td>
<td>1956</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>1957</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>1958</td>
<td>13 Mar</td>
<td>18,62</td>
<td>2,33</td>
<td>365,99</td>
</tr>
<tr>
<td>5</td>
<td>1959</td>
<td>2 Jul</td>
<td>18,85</td>
<td>2,56</td>
<td>428,11</td>
</tr>
<tr>
<td>6</td>
<td>1960</td>
<td>29 Mei</td>
<td>18,56</td>
<td>2,27</td>
<td>350,53</td>
</tr>
<tr>
<td>7</td>
<td>1961</td>
<td>3 Mei</td>
<td>19,03</td>
<td>2,74</td>
<td>479,87</td>
</tr>
<tr>
<td>8</td>
<td>1962</td>
<td>21 Jan</td>
<td>18,31</td>
<td>2,02</td>
<td>289,46</td>
</tr>
<tr>
<td>9</td>
<td>1963</td>
<td>10 Jan</td>
<td>19,53</td>
<td>3,24</td>
<td>637,95</td>
</tr>
<tr>
<td>10</td>
<td>1964</td>
<td>1 Feb</td>
<td>18,40</td>
<td>2,11</td>
<td>310,83</td>
</tr>
<tr>
<td>11</td>
<td>1965</td>
<td>9 Apr</td>
<td>19,91</td>
<td>3,62</td>
<td>771,95</td>
</tr>
<tr>
<td>12</td>
<td>1966</td>
<td>18 Feb</td>
<td>18,59</td>
<td>2,30</td>
<td>358,22</td>
</tr>
<tr>
<td>13</td>
<td>1967</td>
<td>2 Jan</td>
<td>18,46</td>
<td>2,17</td>
<td>325,46</td>
</tr>
<tr>
<td>14</td>
<td>1968</td>
<td>2 Jan</td>
<td>19,06</td>
<td>2,77</td>
<td>488,26</td>
</tr>
<tr>
<td>15</td>
<td>1969</td>
<td>18 Feb</td>
<td>18,78</td>
<td>2,49</td>
<td>408,72</td>
</tr>
<tr>
<td>16</td>
<td>1970</td>
<td>5 Apr</td>
<td>18,31</td>
<td>2,02</td>
<td>289,46</td>
</tr>
<tr>
<td>17</td>
<td>1971</td>
<td>11 Apr</td>
<td>18,70</td>
<td>2,441</td>
<td>387,08</td>
</tr>
<tr>
<td>18</td>
<td>1972</td>
<td>18 Des</td>
<td>18,83</td>
<td>2,54</td>
<td>422,53</td>
</tr>
<tr>
<td>19</td>
<td>1973</td>
<td>29 Mei</td>
<td>19,18</td>
<td>2,89</td>
<td>525,10</td>
</tr>
<tr>
<td>20</td>
<td>1974</td>
<td>5 Mar</td>
<td>19,00</td>
<td>2,71</td>
<td>471,05</td>
</tr>
<tr>
<td>21</td>
<td>1975</td>
<td>25 Mei</td>
<td>18,89</td>
<td>2,60</td>
<td>439,38</td>
</tr>
<tr>
<td>22</td>
<td>1976</td>
<td>19 Mar</td>
<td>19,53</td>
<td>3,24</td>
<td>637,95</td>
</tr>
<tr>
<td>No</td>
<td>Tahun</td>
<td>Bulan</td>
<td>Debit [m³/s]</td>
<td>Frekuensi [tahun]</td>
<td>Kuat [m³]</td>
</tr>
<tr>
<td>----</td>
<td>-------</td>
<td>---------</td>
<td>--------------</td>
<td>--------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>23</td>
<td>1977</td>
<td>30 Nop</td>
<td>18,86</td>
<td>2,57</td>
<td>430,31</td>
</tr>
<tr>
<td>24</td>
<td>1978</td>
<td>19 Jan</td>
<td>18,47</td>
<td>2,18</td>
<td>327,93</td>
</tr>
<tr>
<td>25</td>
<td>1979</td>
<td>16 Jan</td>
<td>18,98</td>
<td>2,69</td>
<td>465,22</td>
</tr>
<tr>
<td>26</td>
<td>1980</td>
<td>22 Jan</td>
<td>20,71</td>
<td>4,61</td>
<td>1088,18</td>
</tr>
<tr>
<td>27</td>
<td>1981</td>
<td>21 Apr</td>
<td>19,37</td>
<td>3,08</td>
<td>586,09</td>
</tr>
<tr>
<td>28</td>
<td>1982</td>
<td>6 Feb</td>
<td>19,77</td>
<td>3,48</td>
<td>721,21</td>
</tr>
<tr>
<td>29</td>
<td>1983</td>
<td>22 Feb</td>
<td>20,70</td>
<td>4,50</td>
<td>1083,86</td>
</tr>
<tr>
<td>30</td>
<td>1984</td>
<td>1 Feb</td>
<td>19,58</td>
<td>3,29</td>
<td>658,32</td>
</tr>
<tr>
<td>31</td>
<td>1985</td>
<td>22 Feb</td>
<td>19,07</td>
<td>2,78</td>
<td>491,65</td>
</tr>
<tr>
<td>32</td>
<td>1986</td>
<td>4 Jun</td>
<td>19,29</td>
<td>3,00</td>
<td>559,46</td>
</tr>
<tr>
<td>33</td>
<td>1987</td>
<td>25 Feb</td>
<td>19,17</td>
<td>2,88</td>
<td>522,02</td>
</tr>
<tr>
<td>34</td>
<td>1988</td>
<td>10 Feb</td>
<td>19,03</td>
<td>2,74</td>
<td>479,87</td>
</tr>
<tr>
<td>35</td>
<td>1989</td>
<td>13 Feb</td>
<td>20,12</td>
<td>3,83</td>
<td>851,09</td>
</tr>
<tr>
<td>36</td>
<td>1990</td>
<td>25 Feb</td>
<td>18,51</td>
<td>2,22</td>
<td>337,29</td>
</tr>
<tr>
<td>37</td>
<td>1991</td>
<td>-</td>
<td>18,40</td>
<td>2,11</td>
<td>310,83</td>
</tr>
<tr>
<td>38</td>
<td>1992</td>
<td>3 Des</td>
<td>18,85</td>
<td>2,56</td>
<td>428,11</td>
</tr>
<tr>
<td>39</td>
<td>1993</td>
<td>29 Jan</td>
<td>20,55</td>
<td>4,26</td>
<td>1024,27</td>
</tr>
<tr>
<td>40</td>
<td>1994</td>
<td>13 Feb</td>
<td>18,80</td>
<td>2,51</td>
<td>414,22</td>
</tr>
<tr>
<td>41</td>
<td>1995</td>
<td>10 Mei</td>
<td>19,55</td>
<td>3,26</td>
<td>644,71</td>
</tr>
<tr>
<td>42</td>
<td>1996</td>
<td>5 Des</td>
<td>19,20</td>
<td>2,91</td>
<td>531,27</td>
</tr>
<tr>
<td>43</td>
<td>1997</td>
<td>14 Apr</td>
<td>19,05</td>
<td>2,76</td>
<td>485,79</td>
</tr>
<tr>
<td>44</td>
<td>1998</td>
<td>21 Feb</td>
<td>19,25</td>
<td>2,96</td>
<td>546,85</td>
</tr>
<tr>
<td>45</td>
<td>1999</td>
<td>2 Nop</td>
<td>19,10</td>
<td>2,81</td>
<td>500,74</td>
</tr>
<tr>
<td>46</td>
<td>2000</td>
<td>21 Mar</td>
<td>20,40</td>
<td>4,11</td>
<td>962,17</td>
</tr>
<tr>
<td>47</td>
<td>2001</td>
<td>25 Mar</td>
<td>19,15</td>
<td>2,86</td>
<td>515,90</td>
</tr>
<tr>
<td>48</td>
<td>2002</td>
<td>11 Mar</td>
<td>19,20</td>
<td>2,91</td>
<td>531,27</td>
</tr>
<tr>
<td>49</td>
<td>2003</td>
<td>3 Mar</td>
<td>18,85</td>
<td>2,56</td>
<td>428,11</td>
</tr>
<tr>
<td>50</td>
<td>2004</td>
<td>3 Feb</td>
<td>20,75</td>
<td>4,55</td>
<td>1067,42</td>
</tr>
</tbody>
</table>

ΣX_{1:50} = 25382,06

Karena didapatkan data debit yang cukup panjang, maka dapat langsung dipergunakan metode analisa frekuensi dengan tidak meninjau kembali kejadian curah hujannya. Debit banjir rencana akan dihitung untuk periode ulang 1,2,5,10,25,50 dan 100 tahun.

4.4.2 Perhitungan Debit Banjir Rencana (Q_r)

Debit banjir rencana pada laporan ini dihitung dengan metode Distribusi Gumbell Tipe I, yakni:

1. Rata-rata debit banjir
\[
\overline{X} = \frac{\sum_{i} X_i}{n}
\]
\[
\overline{X} = \frac{25382,06}{47} = 540,0438 \text{ m}^3/\text{dt}
\]

2. Standar deviasi
\[
Sn = \sqrt{\frac{\sum (X_i - \overline{X})^2}{n - 1}}
\]
\[
Sn = \sqrt{\frac{2137406,106}{47 - 1}} = 215,582
\]

3. Faktor frekuensi (Gumbell Extreme Value)
\[
K = \frac{Y_r - \bar{Y}n}{Sn}
\]
\[
Y_r = \left(-\frac{\ln^{\ast} \ln \frac{T}{T-1}}{Sn} \right)
\]

Dimana:
- \(Y_r\) = reduce variate, tergantung dari T
- \(\bar{Y}n\) = reduce mean, tergantung jumlah sampel (n) lihat tabel lampiran
- \(Sn\) = reduce standard deviation, tergantung jumlah sampel (n) lihat tabel lampiran
- \(T\) = periode ulang (tahun)

4. Debit banjir
\[
Q = \overline{X} + (K \ast Sn)
\]

Hasil perhitungan disajikan dalam tabel berikut:

Tabel 4.3 Perhitungan Analisa Debit Banjir Rencana Metode Gumbell Tipe I

<table>
<thead>
<tr>
<th>PERIODE ULANG (T)</th>
<th>REDUCE VARIATE (Y_t)</th>
<th>FAKTOR FREKUENSI (K)</th>
<th>DEBIT BANJIR ((\overline{X} + (K \ast Sn)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,01</td>
<td>-1,5293</td>
<td>-1,7968</td>
<td>152,7288</td>
</tr>
<tr>
<td>2</td>
<td>0,3665</td>
<td>-0,1564</td>
<td>506,3305</td>
</tr>
<tr>
<td>5</td>
<td>1,4999</td>
<td>0,8243</td>
<td>717,7284</td>
</tr>
<tr>
<td>10</td>
<td>2,2500</td>
<td>1,4733</td>
<td>857,6257</td>
</tr>
<tr>
<td>25</td>
<td>3,1985</td>
<td>2,2940</td>
<td>1034,5343</td>
</tr>
<tr>
<td>50</td>
<td>3,9019</td>
<td>2,9026</td>
<td>1165,7230</td>
</tr>
<tr>
<td>100</td>
<td>4,6000</td>
<td>3,5067</td>
<td>1295,9417</td>
</tr>
</tbody>
</table>
4.4.3 Tinggi Bebas/ Freeboard Jembatan

Menurut BMS 1992 bahwa tinggi bebas yang disyaratkan untuk jembatan minimal 1,00 m diatas muka air banjir 50 tahunan.

4.5 PEMILIHAN STRUKTUR ATAS JEMBATAN

Permasalahan utama penggantian jembatan Kali Ngantru ini adalah jembatan lama sering kali terendam air banjir saat musim hujan, maka dapat disimpulkan bahwa struktur jembatan yang baru harus bisa mengatasi masalah tersebut. Yakni mengganti struktur jembatan yang lama, menambah bentang efektif jembatan, meninggikan level jembatan dan memperluas penampang basah sungainya, sehingga bisa diharapkan jembatan baru tidak terendam air banjir lagi.

Dari keterangan di atas, maka struktur jembatan yang baru lebih cocok menggunakan rangka baja daripada beton pratekan, ini dikarenakan:

1. Dari tabel 2.23 dapat dilihat bahwa pada elevasi lantai jembatan yang sama, penggunaan jembatan beton pratekan dengan perbandingan h/L yang besar mengakibatkan jarak tinggi bebas/ Freeboard menjadi kecil, sehingga kemungkinan jembatan terendam air menjadi lebih besar. Bila elevasi lantai kendaraan dinaikkan, maka oprit jembatan akan menjadi lebih tinggi.

2. Dapat dilihat juga variasi bentangnya. Untuk jembatan berbentang lebih dari 100 m, penggunaan struktur beton pratekan akan memerlukan bentang yang lebih banyak dan mengakibatkan penggunaan pilar, satu atau bahkan lebih.

Dari kedua alasan tersebut dapat disimpulkan bahwa untuk pekerjaan jembatan Kali Ngantru ini, penggunaan struktur jembatan beton pratekan adalah tidak ekonomis, sehingga dipakai struktur rangka baja karena dapat lebih memungkinkan dan lebih ekonomis.

Selain itu penggunaan struktur rangka baja pada jembatan di Indonesia yang biasanya prafabrikasi, juga mempunyai beberapa keuntungan yaitu:

1. Perencanaan lebih sederhana dan hanya memerlukan pendetailan bangunan bawah saja

2. Komponen standar, dapat disimpan siap pakai untuk diangkut ke jembatan

3. Mudah diangkut, lewat laut atau darat/ jalan ke lokasi jembatan

4. Hubungan/ sambungan di lapangan adalah sederhana

4.5.1 Penentuan Bentang Jembatan

Setelah pemilihan struktur jembatan selesai, berikutnya adalah penentuan bentang jembatan yang sesuai.

Menurut BMS 1992 dan dengan mempertimbangkan beberapa aspek seperti:
1. Biaya pekerjaan
3. Debit rencana
4. Jumlah dan penempatan pilar
5. Normalisasi penampang sungai

maka direncanakanlah jembatan rangka baja dengan bentang 2*50 m dan menggunakan elemen khusus (gorong-gorong) disebagian lebar daerah sungai seperti yang terlihat dalam gambar dibawah ini:

![Gambar 4.5 Rencana Bentang Jembatan](image)

Dengan adanya konstruksi gorong-gorong maka akan menghemat penggunaan bentang rangka baja sehingga dapat menekan besarnya biaya, akan tetapi dengan adanya gorong-gorong tersebut, harus tidak mengganggu kelancaran arus sungai saat terjadi banjir dan air tidak meluap kepermukaan jalan. Untuk itu tinggi bebas vertikal bisa dinaikkan menjadi 1,5 m.

4.6 ANALISA DATA TANAH

Pekerjaan penyelidikan tanah yang dilaksanakan meliputi pekerjaan di lapangan seperti pekerjaan sondir mesin dan pekerjaan boring mesin, serta
pengambilan contoh tanah/ *sampling* yang dibawa ke laboratorium untuk diselidiki mengenai sifat fisik dan sifat mekanis tanah.

4.6.1 Penyelidikan Lapangan

Penyelidikan lapangan yang dilaksanakan yaitu meliputi pekerjaan pengeboran dan sondir.

1. **Pekerjaan Sondir**

Jumlah titik sondir yang dilaksanakan ada 2 titik yaitu titik SM-1 dan titik SM-2 sedangkan alat yang digunakan adalah sondir mesin Hidraulis Tipe *Dutch Cone Penetrometer* dengan kapasitas 10 ton dan tahanan konus/ *Cone Resistance* maksimum $q_c = 700 \text{ kg/cm}^2$. Hasil pengujian sondir tersebut adalah sebagai berikut:

<table>
<thead>
<tr>
<th>Tabel 4.4 Hasil Pengujian Sondir</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITIK SM-1</td>
</tr>
<tr>
<td>Kedalaman (m)</td>
</tr>
<tr>
<td>0,40-12,00</td>
</tr>
<tr>
<td>12,20-15,00</td>
</tr>
<tr>
<td>15,20-32,40</td>
</tr>
<tr>
<td>32,60-34,80</td>
</tr>
<tr>
<td>34,80</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

2. **Pekerjaan boring**

Jumlah titik bor yang dilaksanakan hanya ada 1 titik yaitu titik BH-1, yang dilakukan hingga kedalaman 40 m dari permukaan tanah setempat sedangkan alat yang digunakan adalah bor mesin/ *Drilling Bore* dengan diameter 3 inch. Hasil pengujian boring tersebut adalah sebagai berikut:

<table>
<thead>
<tr>
<th>Tabel 4.5 Hasil Pengujian Boring</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEDALAMAN (m)</td>
</tr>
<tr>
<td>0-4</td>
</tr>
<tr>
<td>4-6</td>
</tr>
<tr>
<td>6-12,4</td>
</tr>
</tbody>
</table>
BAB IV
ANALISA DATA

<table>
<thead>
<tr>
<th>12,4-20</th>
<th>Lempung</th>
<th>Abu-abu kehitaman, kaku</th>
<th>13-16</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-31</td>
<td>Lempung</td>
<td>Hitam, kaku sampai sangat kaku</td>
<td>15-17</td>
</tr>
<tr>
<td>31-40</td>
<td>Lempung</td>
<td>Hitam, sangat kaku</td>
<td>20-28</td>
</tr>
</tbody>
</table>

4.6.2 Penyelidikan Laboratorium

Penyelidikan Laboratorium yang dilaksanakan meliputi pekerjaan sifat-sifat fisik dan sifat-sifat mekanis tanah.

1. Sifat fisis/physical properties

Metode yang digunakan untuk mencari sifat fisis di atas adalah dengan standar ASTM, sedangkan parameter yang dicari adalah:

- Specific Gravity G_s
- Bulk Density γ_b (gram/cm3)
- Dry Density γ_d (gram/cm3)
- Atterberg Limit LL, PL, IP (%)
- Water Content w (%)
- Void Ratio e
- Porosity n (%)

2. Sifat mekanis/mechanical properties

Untuk pekerjaan ini digunakan alat Direct Shear Test dan Consolidation Test.

Dari tes dengan peralatan tersebut didapatkan harga-harga sifat makanis antara lain:

- Cohesion C_u (kg/cm2)
- Angle of Internal Friction ϕ derajat
- Coefficient of Consolidation C_v
- Compression Index C_c

Untuk nilainya dapat dilihat di lampiran penyelidikan tanah.

4.7 PEMILIHAN STRUKTUR BAWAH JEMBATAN

Setelah melakukan studi mengenai beberapa alternatif pemilihan bangunan bawah jembatan dan penyelidikan tanah di lokasi, maka dapat segera dipilih struktur bangunan bawah serta jenis pondasinya.
4.7.1 Abutmen (Abutment) dan Pilar (Peir)

Abutmen disini dipilih tipe pangkal tembok penahan kontrafort karena selain dapat difungsikan sebagai dinding penahan tanah yang dilengkapi sayap samping, konstruksinya juga ramping dan lebih ringan, sehingga otomatis dapat mengurangi jumlah beban mati/ dead load yang akan diteruskan ke struktur pondasi dan secara keseluruhan perencanaannya dapat lebih ekonomis.

Sedangkan pilar yang letak konstruksinya bakal berada dalam aliran muka air banjir dipilih tipe pilar portal dua tingkat (H_p= 10-25 m), karena selain konstruksinya yang tinggi, juga mempunyai dua kolom penyangga yang diperkuat oleh balok diafragma yang akan menambah kokoh konstruksinya. Selain itu penampang kolom berbentuk bulat sehingga dalam segala arah arus banjir mempunyai bidang kontak yang sama dengan diameter kolom dan menjadikan arus banjir menjadi lancar.

Data tanah yang diperlukan untuk keperluan perencanaannya antara lain nilai kohesi tanah Cu, sudut geser tanah , berat jenis tanah \(\gamma \) dan data soil properties lainnya. Dalam perencanaannya nanti perlu juga ditinjau kestabilan terhadap sliding, guling, bidang runtuh tanah serta penurunan tanahnya/ settlement.

![Gambar 4.7 Tipe Abutment dan Peir](http://eprints.undip.ac.id)

4.7.2 Pondasi dan Poer

Mengingat daerah sekitar lokasi jembatan Kali Ngantru, tanah keras dijumpai pada kedalaman \(\pm 35 \) m dari permukaan tanah asli atau terletak pada lapisan tanah dalam, maka pondasi jembatan direncanakan menggunakan pondasi tiang pancang.

Sedangkan Poer atau Pile Cap adalah sebagai kepala dari kumpulan tiang pancang, berfungsi untuk mengikat beberapa tiang pancang menjadi satu kesatuan agar letak atau posisi dari tiang pancang tidak berubah dan beban dari struktur atas dapat disalurkan dengan sempurna ke lapisan tanah keras melalui pondasi tiang
pancang tersebut, sehingga struktur jembatan dapat berdiri dengan stabil dan kuat sesuai dengan umur rencana.

4.7.3 Dinding Penahan Tanah

Konstruksi dinding penahan tanah direncanakan untuk mencegah bahaya keruntuhan tanah pada bagian curam/ lereng, pada belokan alur sungai ataupun pada tanah yang tidak dijamin kestabilannya. Rencana bentuk konstruksi dinding penahan tanah adalah seperti di bawah ini:

Gambar 4.8 Rencana Bentuk Dinding Penahan Tanah