BAB VI

ANALISIS HIDROLIKA PENAMPANG SUNGAI DENGAN SOFTWARE HEC-RAS

6.1. Tinjauan Umum

Analisis hidrolika penampang sungai dihitung dengan menggunakan program HEC-RAS. Dengan analisis ini dapat diketahui elevasi muka air pada penampang sungai saat suatu debit air melalui sungai tersebut. Hasil dari analisis ini merupakan parameter untuk perencanaan bangunan pengelak dan perencanaan bangunan peredam energi pada bangunan pelimpah.

Data-data yang diperlukan dalam analisis penampang sungai dengan bantuan *software* HEC-RAS adalah:

- 1. Penampang memanjang sungai
- 2. Potongan melintang sungai
- 3. Data debit yang melalui sungai
- 4. Angka manning penampang sungai

Data penampang memanjang dan potongan melintang sungai dapat dilihat pada Lampiran Data Perencanaan.

Sebelum mulai analisis hidrolika ini, data-data yang diperlukan harus dipersiapkan. Tahap-tahap analisis hidrolika dengan program HEC-RAS adalah sebagai berikut:

- Membuat File HEC-RAS Baru
- Input Data Geometri Sungai
- Input Data Debit
- Analisis hidrolika dari data-data yang dimasukkan

6.2. Membuat *File* HEC-RAS Baru

Tahap-tahap membuat *file* HEC-RAS baru adalah :

- Buka program HEC-RAS

Winte Date Divertante Contant	
M HEC-RAS - River Analysis System	
File Edit Run View Options Help	
	Hydrologic Engineering Center US Army Corps of Engineers
Project:	
Plan:	
Geometry:	
Steady Flow:	
Unsteady Flow:	
Project Description :	SI Units

Title			File Name	Directories			
PANOHAN			PANOHAN.prj	c:\HEC Data\Ras			
GRUBUGAN PANOHAN01			GRUBUGAN.prj PANOHAN01.prj	국 대 대 HEC Data 대 Ras Unsteady Flow Examples			
OK	Cancel	Help	Create Directoru				

- Pilih new project dari menu File

Gambar 6.2 Tampilan Pengisian Nama File Program HEC-RAS

Isi nama *file* pada *Title*, dan nama *file* dengan akhiran .prj seperti pada gambar pada *File Name*. Klik OK.

6.3. Input Data Geometri Sungai

Tahap-tahap dalam input data geometri sungai :

– Menggambar alur sungai.

Di tampilan seperti Gambar 6.1 pada menu *Edit* pilih *Geometric Data...* Tampilan yang keluar adalah seperti Gambar 6.3. Menggambar alur sungai dengan klik pada *River Reach*. Untuk dapat menggambar sesuai dengan peta aslinya, dapat digunakan *file* gambar peta untuk *background* menggambar dengan klik *add/edit background picture*. Dalam menggambar alur sungai titik pertama yang dibuat adalah hulu sungai.

- *Input* data penampang melintang (*cross section*)

Dengan klik pada *cross section*, keluar tampilan seperti Gambar 6.4 . Pilih *add a new cross section* pada menu *Option*.

Gambar 6.3 Tampilan Input Data Geometri Sungai Program HEC-RAS

Gambar 6.4 Tampilan Input Data Potongan Melintang Sungai Program HEC-RAS

Data-data yang dimasukkan pada input data:

River Sta = Nama potongan melintang, diisi dengan angka yang berurutan.

Station	=	Jarak kumulatif antara titik elevasi potongan dari titik paling						
		pinggir	pinggir yang bernilai 0.					
Elevation	=	Elevasi	titik p	ada station				
Downstream rea	ach	length	=	Jarak tiap potongan melintang sungai dengan				
				potongan melintang sebelumnya.				
Manning's n va	lue		=	Nilai angka manning saluran				
Main Channel Bank Station =			=	Station titik saluran utama sungai				
Cont/Exp Coefic	cien	ets	=	Koefisien kontraksi dan ekspansi				

Data-data yang digunakan dalam analisis hidrolika penampang Sungai Grubugan adalah:

 Data Geometri Sungai Grubugan, dapat dilihat pada Lampiran Data Perencanaan

_	Angka kekasaran manning saluran utama sungai	= 0,025
_	Angka kekasaran manning bantaran sungai	= 0,03
_	Koefisien kontraksi	= 0,1
_	Koefisien ekspansi	= 0,3

6.4. *Input* Data Debit

Di tampilan seperti Gambar 6.1 pada menu *Edit* pilih *Steady Flow Data*. Tampilan yang keluar adalah seperti pada Gambar 6.5. Data debit yang digunakan adalah debit sungai antara $10 - 150 \text{ m}^3/\text{dt}$ dengan interval antar $10 \text{ m}^3/\text{dt}$.

Steady Flow Date	nta - FLOW GR	UBUGAN	DEBIT										_ 🗆 🛛
File Options Help													
Enter/Edit Number of Profiles (2000 max): 15 Reach Boundary Conditions Apply Data													
Locations of Flow Data Changes													
Biver S GBUBUGA	AN 👻												
		-				a	- 1						
Heach: downstream	-	Hiver Sta.:	J 08	-	Add A Flow	Unange Locat	ion						
Flow C	hange Location						Pr	ofile Names ar	nd Flow Rates				
River	Reach	RS	10	20	30	40	50	60	70	80	90	100	110
1 S GRUBUGAN	downstream	08	10	20	30	40	50	60	70	80	90	100	110
2 S GRUBUGAN	downstream	07	10	20	30	40	50	60	70	80	90	100	110
3 S GRUBUGAN	downstream	06	10	20	30	40	50	60	70	80	90	100	110
4 S GRUBUGAN	downstream	05	10	20	30	40	50	60	70	80	90	100	110
5 S GRUBUGAN	downstream	04	10	20	30	40	50	60	70	80	90	100	110
6 S GRUBUGAN	downstream	03	10	20	30	40	50	60	70	80	90	100	110
7 S GRUBUGAN	downstream	02	10	20	30	40	50	60	70	80	90	100	110
8 S GRUBUGAN	downstream	01	10	20	30	40	50	60	70	80	90	100	110
9 S GRUBUGAN	downstream	00	10	20	30	40	50	60	70	80	90	100	110
													<u> </u>
Edit Steady flow data f	or the profiles (m3/	/s)											

Gambar 6.5 Tampilan Input Data Debit Sungai Program HEC-RAS

Ganti angka pada *Enter/Edit Number of Profiles* dengan banyaknya besaran debit banjir yang akan dipakai dalam analisis. Lalu isi besarnya debit pada *Profile Names and Flow Rates*.

6.5. Analisis Data-Data yang Telah Dimasukkan

Setelah semua data dimasukkan pada tampilan Gambar 6.1 pilih Steady Flow Analysis pada menu Run. Lalu klik Compute.

E Steady Flow Analysis				23					
File Options Help									
Plan : Plan 01		Short ID	Plan 01						
Geometry File :	Geometripanohan01			-					
Steady Flow File :	flowpanohan			-					
Flow Regime Plan Des Subcritical Supercritical Mixed	cription :								
(COMPUTE)									
Enter to compute water surface	profiles								

Gambar 6.6 Tampilan Analisis Project Program HEC-RAS

Setelah selesai, hasil analisis dapat dilihat pada menu *View* dengan memilih jenis tampilan hasil analisis.

6.6. Hasil Analisis Hidrolika Sungai Grubugan

Setelah analisis selesai, contoh tampilan hasil analisis ditampilkan pada Gambar 6.7 dan Gambar 6.8. Dari hasil analisis dapat dibuat grafik hubungan antara debit aliran dengan elevasi muka airnya. Contoh grafik hubungan antara debit dan muka air dapat dilihat pada gambar 6.9. Untuk lebih lengkapnya, tampilan hasil analisis dilampirkan pada halaman Lampiran Gambar VI.

Kec. Gunem Kab. Rembang

Laporan Tugas Akhir

Gambar 6.7 Tampilan Grafis Muka Air Pada Penampang Melintang Sungai Hasil Analisis Hidrolika Dengan Program HEC-RAS

🖩 Profile Output Table - Standard Table 1 🛛 📃 🗖 🔀												
File Options Std. Tables Locations Help												
HEC-RAS Plan: Plan 03 River: S GRUBUGAN Reach: downstream											Reload Data	
Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl 🔺
			(m3/s)	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)	
downstream	08	10	10.00	59.10	60.55		60.58	0.001390	0.68	14.64	19.27	0.25
downstream	08	20	20.00	59.10	61.16		61.18	0.000904	0.71	28.24	25.59	0.21
downstream	08	30	30.00	59.10	61.61		61.64	0.000678	0.74	40.69	28.89	0.19
downstream	08	40	40.00	59.10	61.99		62.02	0.000586	0.78	52.15	31.62	0.19
downstream	08	50	50.00	59.10	62.33		62.36	0.000517	0.81	63.03	33.66	0.18
downstream	08	60	60.00	59.10	62.63		62.67	0.000465	0.84	73.53	35.32	0.17
downstream	08	70	70.00	59.10	62.91		62.95	0.000428	0.87	83.73	36.87	0.17
downstream	08	80	80.00	59.10	63.17		63.21	0.000406	0.90	93.30	38.26	0.17
downstream	08	90	90.00	59.10	63.40		63.44	0.000392	0.93	102.30	39.52	0.17
downstream	08	100	100.00	59.10	63.61		63.66	0.000383	0.96	110.92	40.70	0.17
downstream	08	110	110.00	59.10	63.81		63.86	0.000377	0.99	119.16	41.79	0.17
downstream	08	120	120.00	59.10	63.99		64.04	0.000376	1.03	126.76	42.77	0.17
downstream	08	130	130.00	59.10	64.16		64.21	0.000377	1.06	133.95	43.68	0.17
downstream	08	140	140.00	59.10	64.31		64.37	0.000379	1.09	140.75	44.53	0.17
downstream	08	150	150.00	59.10	64.46		64.52	0.000383	1.12	147.34	45.33	0.17
												•
•												•
Total flow in c	ross sectio	n.										

Gambar 6.8 Tabel Hasil Analisis Hidrolika Dengan Program HEC-RAS

Hasil dari analisis yang diperlukan sebagai parameter untuk perencanaan Embung Panohan adalah elevasi muka air pada potongan melintang sungai. Pada perencanaan *cofferdam*, dengan analisis hidrolika ini dapat diketahui elevasi muka air hilir saluran pengelak. Pada *flood routing* melalui saluran pengelak dengan perkiraan debit *outflow*, didapat elevasi tampungan pada hulu saluran pengelak. Dari kedua paremeter tersebut dapat diketahui perbedaan elevasi hulu dan hilir, sehingga dapat dicek kebenaran dari perkiraan *outflow*.

Untuk perencanaan bangunan peredam energi, dengan analisis hidrolika dapat diketahui elevasi muka air pada hilir bangunan peredam energi. Elevasi ini untuk menentukan elevasi dasar saluran bangunan peredam energi.

Gambar 6.8 Grafik Hubungan Antara Debit dan Elevasi Muka Air.