BAB VI

ALTERNATIF

PENANGGULANGAN BANJIR

6.1 URAIAN UMUM

Dalam penanggulangan banjir pada kawasan Bandara Ahmad Yani Semarang ini akan diberikan beberapa alternatif penanganan sesuai dengan permasalahan yang ada, sehingga diharapkan alternatif penanganan yang terpilih benar – benar efektif dan efisien. Berikut ini beberapa alternatif penanggulangan banjir yang mungkin untuk dilaksanakan, yaitu:

- a) Normalisasi saluran.
- b) Pintu klep
- c) Pompa.
- d) Kolam penampungan.

Dari beberapa alternatif penanggulangan tersebut dapat dikombinasikan antara alternatif penanggulangan satu dengan yang lainnya.

6.2 NORMALISASI SALURAN

Dari analisis kondisi yang ada terlihat bahwa kondisi saluran yang tersedia sebagian tidak mencukupi untuk menampung seluruh debit yang direncanakan, sehingga perlu dilakukan normalisasi saluran yaitu:

6.2.1 Normalisasi Kali Silandak

Q kapasitas = $142,272 \text{ m}^3/\text{ detik}$ Q 20 tahun = $128,851 \text{ m}^3/\text{ detik}$ Karena Q kapasitas > Q kebutunan 20 th, sehingga Kali Silandak tidak dibutuhkan normalisasi, dengan kondisi sebagai berikut :

Tabel 6.1 Perhitungan Kapasitas Kali Silandak

kondisi	b	Н	m	S	Α	Р	R	n	٧	Q
tersedia	10,000	2,500	1,500	0,0045	34,375	19,014	1,808	0,024	4,139	142,272

6.2.2 Normalisasi Kali Siangker

Q kapasitas = $50,981 \text{ m}^3/\text{detik}$

Q 20 tahun = $44,735 \text{ m}^3/\text{ detik}$

Karena Q kapasitas > Q kebutunan 20 th, sehingga Kali Siangker tidak dibutuhkan normalisasi.

Tabel 6.2 Perhitungan Kapasitas Kali Siangker

kondisi	b	Н	m	S	Α	Р	R	n	٧	Q
tersedia	6,000	2,000	1,500	0,00306	18,000	13,211	1,362	0,024	2,832	50,981

6.2.3 Normalisasi Sungai Kali Banteng

Q kapasitas = $3,157 \text{ m}^3/\text{ detik}$

 $Q \ 10 \ tahun \qquad = \qquad \qquad 5,277 \ \ m^3 / \ detik$

Karena Q kapasitas < Q kebutunan 10 th, sehingga Kali Banteng memerlukan normalisasi.

Tabel 6.3 Perhitungan Kapasitas Kali Banteng

Kondisi	В	Н	M	S	Α	Р	R	N	٧	Q
Tersedia	3,740	0,900	1,000	0,00057	4,176	6,286	0,664	0,024	0,756	3,157

6.2.4 Normalisasi Sungai Kali Salingga

Q kapasitas = $5,646 \text{ m}^3/\text{ detik}$

Q 10 tahun = $11,836 \text{ m}^3/\text{ detik}$

Q kapasitas < Q kebutunan 10 th, sehingga untuk Kali Salingga dibutuhkan normalisasi.

Tabel 6.4 Perhitungan Kapasitas Kali Salingga

Kondisi	В	Н	М	S	Α	Р	R	n	٧	Ø
Tersedia	5,520	1,200	1,000	0,00032	8,064	8,914	0,905	0,024	0,700	5,646

6.2.5 Alternatif Normalisasi

Ada beberapa cara normalisasi saluran yang dapat dipilih dengan berbagai faktor pertimbangannya, yaitu :

- 1. Dengan menambah lebar saluran.
- 2. Dengan menambah ketinggian tanggul saluran.
- 3. Dengan menambah kedalaman saluran.

6.2.5.1. Normalisasi dengan menambah Lebar Saluran

No.	Faktor Pertimbangan	Keuntungan	Kerugian
1.	Teknis	Mampu meningkatkan	• Melebarkan saluran
		kapasitas saluran.	akan menurunkan muka
			air sungai.
			Masih ada pengaruh
			Back Water
2.	Penggunaan		Memerlukan lahan
	Lahan		tambahan sepanjang
			saluran.
3.	Kemudahan	 Dapat dilakukan secara 	• Ada tambahan
	Pekerjaan	mekanis, menggunakan	pekerjaan yaitu
		alat berat.	pekerjaan konstruksi
			pintu klep.

No.	Faktor Pertimbangan	Keuntungan	Kerugian
4.	Penggunaan	• Paling sedikit 1 Alat	
	Alat Berat	berat yang digunakan	
		yaitu <i>Excavator</i> .	
5.	Waktu	• Pemindahan Tanah	Pembebasan tanah akan
	Pelaksanan	secara mekanis dapat	memakan waktu yang
		menghemat waktu	cukup lama.
		pelaksanaan.	
		Pekerjaan pintu klep	
		dapat dilakukan secara	
		bersamaan.	
6.	Nilai	• Dana sewa alat berat	• Diperlukan dana
	Ekonomis	hanya Excavator.	tambahan khusus
			pembebasan tanah
			• Diperlukan dana
			tambahan khusus
			pekerjaan konstruksi
			pintu klep.
7.	Nilai Sosial –		Ada kemungkinan
	Budaya		konfik harisontal
			karena pembebasan
			lahan.

6.2.5.2. Normalisasi dengan menambah Ketinggian Tanggul Saluran

No.	Faktor Pertimbangan	Keuntungan	Kerugian
1.	Teknis	Mampu meningkatkan	Semakin tinggi tanggul
		kapasitas saluran.	saluran kemungkinan
			air dapat masuk saluran
			minim.
			• Perlu dibuat lubang.
			pembuangan
			memembus tanggul.
			Menimbulkan
			kebocoran yang
			mematikan fungsi
			tanggul.
2.	Penggunaan	• Tidak memerlukan	
	Lahan	lahan tambahan	
		sepanjang saluran.	
3.	Kemudahan		• Ada 4 tahap pekerjaan
	Pekerjaan		yaitu penggalian,
			pengangkutan,
			penghamparan dan
			pemadatan tanah
			timbunan untuk
			pembuatan tanggul.
			Ada pekerjaan
			tambahan pembuatan
			saluran pembuangan
			menembus tanggul.

No.	Faktor Pertimbangan	Keuntungan	Kerugian
4.	Penggunaan		• Paling sedikit 3 Alat
	Alat Berat		berat yang digunakan
			yaitu <i>Excavator</i> ,
			Loader, dan Vibro
			Roller.
5.	Waktu	• Pemindahan Tanah	• Diperlukan waktu lebih
	Pelaksanan	secara mekanis dapat	untuk menyelesaikan
		menghemat waktu	keempat tahapan
		pelaksanaan.	pekerjaan tanah.
			• Diperlukan tambahan
			waktu untuk pekerjaan
			saluran menembus
			tanggul.
6.	Nilai	• Tidak diperlukan dana	• Diperlukan dana lebih
	Ekonomis	tambahan khusus	untuk penyelesaian
		pembebasan tanah	keempat tahap
			pekerjaan tanah
			tersebut.
			• Diperlukan dana
			tambahan khusus
			pekerjaan saluran
			pembuangan tembus
			tanggul.

No.	Faktor	Keuntungan	Kerugian
	Pertimbangan	g	

7.	Nilai Sosial –	Kemungkinan akan ada
	Budaya	tindakan masyarakat
		membuat lubang pada
		tanggul untuk jalan air,
		mengingat fungsi lahan
		sekitar adalah tambak
		milik masyarakat.

6.2.5.3. Normalisasi dengan menambah Kedalaman Saluran

No.	Faktor Pertimbangan	Keuntungan	Kerugian
1.	Teknis	• Mampu meningkatkan	• Elevasi dasar saluran
		kapasitas saluran.	makin menurun.
		• Membersihkan saluran	• Ada pengaruh <i>Back</i>
		dari endapan.	Water
2.	Penggunaan	• Tidak memerlukan	
	Lahan	lahan tambahan	
		sepanjang saluran.	
3.	Kemudahan	• Dapat dilakukan secara	• Ada tambahan
	Pekerjaan	mekanis, menggunakan	pekerjaan yaitu
		alat berat.	pekerjaan konstruksi
			pintu klep.
4.	Penggunaan	• Paling sedikit 1 Alat	
	Alat Berat	berat yang digunakan	
		yaitu <i>Excavator</i> .	

No.	Faktor Pertimbangan	Keuntungan	Kerugian
5.	Nilai	• Tidak diperlukan dana	• Diperlukan dana untuk

	Ekonomis	tambahan khusus	pekerjaan konstruksi
		pembebasan tanah	pintu klep.
		• Dana sewa alat berat	
		hanya Excavator.	
6.	Waktu	• Pemindahan Tanah	
	Pelaksanan	secara mekanis dapat	
		menghemat waktu	
		pelaksanaan.	
		• Pekerjaan pintu klep	
		dapat dilakukan secara	
		bersamaan.	
7.	Nilai Sosial –	Minim-nya	
	Budaya	kemungkinan konfik	
		harisontal dengan	
		masyarakat.	
		• Minim-nya	
		kemungkinan tindakan	
		masyarakat yang	
		membahayakan	
		konstruksi.	

6.3 PINTU KLEP

Pintu klep difungsikan sebagai alat pengendali banjir yang digunakan pada sungai atau saluran yang terpengaruh oleh pasang – surut air laut. Pada saat

pasang muka air laut akan naik bahkan hingga melebihi muka air sungai, maka akan terjadi pembalikan aliran air (*backwater*) sungai ke arah hulu. Jika kondisi ini berlangsung secara terus menerus maka akan terjadi genangan yang berlebihan hingga terjadi banjir. Untuk itu pintu klep ditempatkan pada titik – titik kondisi di mana bila terjadi pasang, arus akan membalik.

6.3.1 Pintu Klep di Kali Silandak

Dari analisis pada bab sebelumnya didapatkan bahwa pengaruh pasang – surut (*back water*) tidak mencapai titik tinjauan, hanya terjadi sampai 1865,11 m dari muara sungai, sehingga tidak diperlukan pintu klep. Dalam hal ini *back water* memang terjadi namun tidak sampai mengganggu kapasitas saluran.

6.3.2 Pintu Klep di Kali Siangker

Sama dengan Kali Silandak, dari analisis pada bab sebelumnya didapatkan bahwa pasang – surut (*back water*) tidak mencapai pada saluran di belakang landasan pacu yang merupakan titik *approcach area*, dimana pada penampang saluran ini memiliki keterbatasan dalam peninggian tanggul, karena memiliki pengaruh dalam aktivitas *take off* atau *landing*. Pengaruh pasang – surut (*back water*) terjadi hanya sampai 775,86 m dari muara sungai, sehingga tidak diperlukan pintu klep. Dalam hal ini *Back Water* memang terjadi namun tidak mencapai titik tinjauan.

6.3.3 Pintu Klep di Kali Banteng

Dari analisis bab sebelumnya menunjukkan bahwa pasang – surut (*back water*) terjadi hingga mencapai titik tinjauan (menggenangi bandara), bahkan

melebihinya yaitu hingga mencapai 3702,09 m dari muara sungai sehingga diperlukan pintu klep.

6.3.4 Pintu Klep di Kali Salingga

Sama seperti Kali Banteng, analisis pada bab sebelumnya menunjukkan bahwa pasang – surut (*back water*) terjadi hingga mencapai titik tinjauan (menggenangi bandara), bahkan melebihinya yaitu hingga mencapai 6360,88 m dari muara sungai sehingga diperlukan pintu klep.

6.4 STASIUN POMPA

Sistem drainase yang tidak dapat sepenuhnya mengandalkan gravitasi sebagai faktor pendorong, untuk itu digunakan stasiun pompa. Pompa ini berfungsi untuk membantu mengeluarkan air langsung dari saluran drainase maupun dari kolam penampungan pada saat air tidak dapat mengalir secara gravitasi karena muka air di muara (hilir) lebih tinggi daripada muka air di sebelah hulu akibat pasang surut (*back water*). Dalam hal ini pompa dikombinasikan dengan pintu klep.

Pada kondisi air laut pasang melebihi muka air sungai pintu klep akan tertutup secara otomatis, sehingga stasiun pompa difungsikan untuk membuang air langsung dari sungai yang tertahan oleh pintu klep.

6.5 KOLAM PENAMPUNGAN

Kolam penampungan berfungsi untuk menyimpan sementara debit saluran sehingga puncak banjir dapat dikurangi. Kolam ini menampung volume air banjir yang datang dari hulu untuk sementara waktu kemudian dilepaskan kembali pada waktu banjir surut atau dapat dilepaskan langsung tanpa atau melalui pompa.

Dalam hal kombinasi antara pintu klep, stasiun pompa dan kolam penampungan pada kondisi air laut pasang melebihi muka air sungai pintu klep akan tertutup secara otomatis, sehingga stasiun pompa difungsikan untuk membuang seketika air hujan yang tertampung di kolam penampungan yang tertahan oleh pintu klep. Semakin besar volume kolam penampungan maka semakin kecil kapasitas pompa yang akan digunakan.

Ada beberapa metode penanggulangan banjir dengan pintu klep dan kombinasinya yang dapat dipilih, yaitu :

- 1. Pintu klep.
- 2. Pintu klep dan pompa
- 3. Pintu klep, pompa dan kolam penampungan .

Sebagai dasar dalam pemilihan alternatif ini, berikut diuraikan beberapa faktor yang menjadi pertimbangan :

6.6.1. PINTU KLEP

No.	Faktor Pertimbangan	Keuntungan	Kerugian
1.	Teknis	Menanggulangi	• Saat terjadi pasang aliran
		Pengaruh Back Water.	terhenti di muka pintu
			klep.
2.	Resiko yang		• Jika air laut pasang dan
	muncul		terjadi hujan. debit meluap
			menggenangi kawasan
			bandara.
			• Sehingga upaya
			penanggulangan banjir
			gagal
3.	Penyediaan	• Tidak dibutuhkan	
	Fasilitas lainya	fasilitas lainya.	
4.	Penggunaan	• Tidak memakan lahan,	
	Lahan	lokasi pintu klep di	
		badan saluran.	

N	10.	ktor bangan	Keuntungan	Kerugian		n
5	. Nilai		• Hanya diperlukan dana	• Jika	Bandara	tergenang,

Ekonomis	pembuatan pintu klep.		jalur	pener	bangan
			terganggu.		
		•	Rawan terja	ıdi kecela	ıkaan.
		•	Kerugian	luar	biasa
			ditanggung	pihak ba	ndara.

6.6.2. PINTU KLEP DAN POMPA

No.	Faktor Pertimbangan	Keuntungan	Kerugian
1.	Teknis	Menanggulangi Pengaruh	
		Back Water.	
		Saat terjadi pasang aliran	
		terhenti di muka pintu klep	
		namun dapat diteruskan	
		dengan menggunakan	
		pompa.	
2.	Resiko yang	Bahaya bandara tergenang	
	muncul	karena pengaruh back water	
		diatasi dengan pintu klep.	
		Bahaya bandara tergenang	
		karena pintu klep tertutup	
		diatasi dengan pompa.	
3.	Penyediaan		Ada kebutuhan akan
	Fasilitas lainya		pompa

No.	Faktor Pertimbangan	Keuntungan	Kerugian
4.	Penggunaan	• Tidak memakan lahan,	
	Lahan	lokasi pintu klep di badan	

		saluran.	
		• Stasiun pompa dapat	
		ditempatkan di tanggul	
		saluran yang tidak	
		mengganggu jalan inspeksi	
5.	Nilai Ekonomis	• Kerugian luar biasa jika	Diperlukan anggaran
		bandara tergenang dapat	untuk pembuatan
		dihindari	pintu klep beserta
			stasiun pompa.

6.6.3. PINTU KLEP, POMPA DAN KOLAM PENAMPUNGAN

No.	Faktor Pertimbangan	Keuntungan	Kerugian
1.	Teknis	Menanggulangi Pengaruh Back Water.	
		Saat terjadi pasang aliran terhenti di	
		muka pintu klep namun dapat	
		diteruskan dengan menggunakan	
		pompa.	
2.	Resiko yang	Bahaya bandara tergenang karena	
	muncul	pengaruh back water diatasi dengan	
		pintu klep.	
		Bahaya bandara tergenang karena pintu	
		klep tertutup diatasi dengan pompa.	
		Sehingga upaya penanggulangan banjir	
		berhasil.	

No.	Faktor Pertimbangan	Keuntungan	Kerugian
3.	Penyediaan	Pompa yang dibutuhkan	

Fasilitas lainya	dapat diminimalkan.	
	Memanfaatkan lebar	
	saluran yang sebagai	
	tampungan.	
4. Penggunaan	• Tidak memakan lahan,	Memerlukan
Lahan	lokasi pintu klep di badan	penangangan khusus
	saluran.	untuk tampungan.
	• Stasiun pompa dapat	
	ditempatkan di tanggul	
	saluran yang tidak	
	mengganggu jalan	
	inspeksi	
	• Letak tampungan dapat	
	memanfaatkan lebar	
	saluran.	

6.7 ALTERNATIF TERPILIH

Dari analisis di atas, normalisasi dipilih dengan cara menambah kedalaman saluran dan bangunan yang melengkapinya adalah kombinasi pintu klep, pompa dan kolam penampungan.

6.8 PERMASALAHAN

Berdasarkan data lapangan yang telah diperoleh dan analisis hidrologi serta analisis hidrolika pada bab sebelumnya, bahwa permasalahan yang terjadi antara lain :

- Berkurangnya kapasitas sungai atau saluran akibat adanya sedimentasi (pada Kali Banteng dan Kali Salingga)
- 2. Meningkatnya debit Sungai akibat perubahan tata guna lahan di daerah hulu (kawasan industri Ngaliyan)

- 3. Pemeliharaan yang sangat kurang
- 4. Bandara Ahmad Yani yang berlokasi di kawasan pantai dengan elevasi di bawah muka air pasang dan berbatasan langsung dengan laut, sangat memungkinkan terjadinya genangan air pasang (rob) pada saat air laut pasang tinggi.
- 5. Kondisi akan menjadi lebih parah jika datangnya air pasang (rob) tersebut bersamaan dengan hujan deras.

6.9 PENANGANAN MASALAH

Berdasarkan permasalahan yang ada, maka konsep yang digunakan untuk penanggulangan banjir bandara Ahmad Yani Semarang adalah sebagai berikut :

- Memastikan bahwa banjir kiriman dari daerah atas terpisah dengan banjir lokal pada daerah tinjauan. Dalam hal ini Kali Silandak dan Kali Siangker harus benar – benar mampu melayani banjir kiriman dari daerah hulu.
- Membangun tanggul di sepanjang sisi selatan Kali Mati yang menghubungkan tanggul Kali Silandak dan Kali Siangker, serta melengkapinya dengan pintu klep pada ujung hilir Kali Banteng dan Kali Salingga.
- 3. Membangun kolam penampungan di Kali Banteng dan Kali Salingga dilengkapi dengan stasiun pompa.

6.10 MATRIKS PERMASALAHAN DAN PENANGANANNYA

No.	Saluran	Fungsi melayani	Permasalahan	Penanganan	
-----	---------	--------------------	--------------	------------	--

1.	Kali Silandak	banjir kiriman	-	-
2.	Kali Siangker	banjir kiriman	-	-
3.	Kali Banteng	banjir lokal	berkurangnya kapasitas sungai akibat sedimentasi nangarah kapa sedangai akibat sedimentasi	pengerukan sedimen (normalisasi) dengan menambah kedalaman
			 pengaruh back water pada saat air laut pasang tinggi sistem gravitasi tidak berjalan ketika air laut pasang tinggi air laut pasang tinggi datang bersamaan dengan hujan deras 	 pembuatan tanggul yang menghubungkan tanggul Kali Silandak dan tanggul Kali Siangker, dilengkapi dengan pintu klep pada ujung muara Kali Salingga melengkapi outlet dengan stasiun pompa dan kolam penampungan
4.	Kali Salingga	banjir lokal	 berkurangnya kapasitas sungai akibat sedimentasi pengaruh back water pada saat air laut pasang tinggi sistem gravitasi tidak berjalan ketika air laut pasang tinggi air laut pasang tinggi datang bersamaan dengan hujan deras 	 pengerukan sedimen (normalisasi) dengan menambah kedalaman pembuatan tanggul yang menghubungkan tanggul Kali Silandak dan tanggul Kali Siangker, dilengkapi dengan pintu klep pada ujung muara Kali Salingga melengkapi outlet dengan stasiun pompa dan kolam penampungan