PENGARUH SUHU KERJA MESIN TERHADAP VISKOSITAS MINYAK PELUMAS

Irung Sigit Atmanto*

Abstract
An engine lubrication system is use to protect surface friction, it may cause of damage. For continuous operation engine need a special oil lubrication. Highest temperature will be occur when an engine in continuous operation. An oxidation process extremely fast occur on high temperature, there for an oil lubrication is fastest damage, so an oil lubrication must be replace with the new one.

Key word: Lubrication, Temperature, Oksidation, viscosity

PENDAHULUAN
Pelumas pada suatu mesin dilakukan untuk melapisi bagian-bagian mesin yang saling bergeraskan, sehingga dapat memperpanjang umur pemakaian mesin tersebut. Minyak pelumas yang beredar saat ini terdapat beberapa merek yang masing-masing memiliki kriteria yang berbeda. Kriteria minyak pelumas yang berbeda tersebut dimaksudkan untuk dipergunakan pada mesin yang berbeda.

Sampai saat ini buku petunjuk pemeliharaan penggunaan minyak pelumas hanya menyebutkan umur minyak pelumas yang diukur dengan jumlah jam operasi atau jumlah kilometer yang ditempuh oleh suatu mesin tanpa membedakan apakah motor tersebut beroperasi secara kontinyu atau tidak. Dalam hal ini jika suatu motor dioperasikan secara kontinyu, suhu motorpun akan naik akibatnya sifat-sifat minyak pelumas akan mulai berubah sedikit demi sedikit walaupun sudah diberi bahan aditif.

Hal utama yang paling mudah diketahui adalah jika minyak pelumas tersebut suhuanya dinaikkan, maka viskositasnya akan menurun, sehingga daya lunasnya menurun pula dengan kata lain jarak tempuhnya menjadi lebih pendek.

Minyak Pelumas dan Karakteristiknya
Sistem pelumasan pada motor disamping sebagai pelapis bidang yang bergeraskan juga berfungsi sebagai pendingin sehingga dalam operasinya minyak pelumas akan menerima suhu yang tinggi. Minyak pelumas yang banyak beredar dan banyak digunakan untuk pelumasan mesin bahan dasarnya adalah minyak mineral. Minyak ini didapat dari bahan tambang dan minyak mineral ini dinilai paling ekonomis sebab pengolahannya paling mudah serta memiliki kelebihan antara lain:
1. Kemampuan suhu operasinya cukup lebar (160° - 200° C) untuk dapat melayani penggunaan di dalam industri maupun kendaraan.
2. Sifat-sifat kimia dan fisiknya mudah dikontrol.
4. Mudah dicampur dengan bahan kimia lainnya seperti bahan aditif.
5. Tidak merusak sekat (seal) dan saluran pelumas.

Minyak pelumas yang banyak beredar dan digunakan untuk pelumasan mesin memiliki sifat-sifat yang menonjol seperti vicksitas, kerapatan dan warna.

*Penulis adalah Staf Pengajar PSD. III Teknik Mesin FT. UNDIP
Ketiga sifat tersebut diatas dapat menunjukkan apakah minyak pelumas tersebut layak untuk digunakan atau tidak. Dalam pengoperasianya, minyak pelumas akan mendapat perlakuan yang berbeda antara motor yang satu dan lainnya. Hal ini akan mempengaruhi sifat - sifat minyak tersebut.

Pada minyak pelumas memiliki tanda pengenal warna khusus yang tergantung pada ukuran didih minyak pelumas, sebagai misal warna yang lebih bening memiliki titik didih yang lebih tinggi. Perbedaan tingkat kontaminasi minyak pelumas akan menunjukkan terjadinya perbedaan warna, sehingga hal ini digunakan sebagai pedoman untuk membedakan minyak pelumas yang telah dipakai atau belum. Disamping itu viskositas minyak pelumas ditunjukkan dengan angka, dan angka inilah yang menunjukkan kemampuan dalam melayani mesin pada variasi suhu. Kekentalan minyak pelumas ini sangat dipengaruhi oleh suhu ruangan dan suhu operasi mesin, sehingga untuk daerah berbeda serta sistem operasi mesin yang berbeda dibutuhkan minyak pelumas berbeda pula. Minyak pelumas yang beredar dan banyak digunakan saat ini ada dua jenis yaitu minyak pelumas monograde (seperti SAE 40, SAE 50) dan minyak pelumas multigrade (SAE 20W - 50). Pada minyak pelumas multigrade memiliki rentang suhu yang lebih tinggi dibanding dengan minyak pelumas monograde.

Sifat oksidasi minyak pelumas merupakan proses alami jika berada pada suatu daerah yang mengandung oksigen. Oksidasi ini berlangsung sangat lambat jika berada pada suhu dibawah suhu ruangan, akan tetapi oksidasi akan lebih cepat jika suhu berada diatas 200°F. Terjadinya oksidasi minyak pelumas merupakan proses yang tidak diinginkan sebab akan membentuk lumpur dan akan menyumbat saluran pelumas. Sedangkan oksidasi yang bersifat asam akan tersirkulasi bersama minyak pelumas dan ini akan mempengaruhi sifat korosif pada suhu tinggi. Sifat asam ini akan merusak bantalan - bantalan yang berupa bintik-bintik hitam dan deposit yang terjadi akan melekat pada bagian bantalan, akhirnya akan menghambat proses pelumasan.

Ketahanan minyak pelumas terhadap proses oksidasi ini bergantung pada dari mana asal minyak pelumas tersebut dan proses pengolahannya. Namun bagaimana pun baiknya proses pengolahan minyak pelumas tetap tidak dapat menghilangkan sifat oksidasi, untuk itu ditambahkan zat aditif pelindung oksidasi. Aditif pelindung oksidasi ini bersifat mengikat oksigen dari udara, sehingga oksigen tidak sampai bercampur dengan hidro karbon. Pelindung oksidasi ini kemampuannya terbatas jika sudah habis teroksidasi. Untuk itu minyak pelumas harus segara diganti dengan pelindung oksidasi yang baru atau minyak pelumas tersebut sudah tidak dapat dipakai lagi. Adapun hal yang mempengaruhi proses oksidasi adalah lingkungan udara yang lembab, sehingga minyak pelumas yang digunakan untuk melayani mesin yang dipakai pada daerah dengan kelembaban yang tinggi, maka umur minyak pelumas tidak terlalu lama.

Titik nyala atau flash point minyak pelumas merupakan suhu terendah bilamana minyak pelumas dipanas dengan peralatan standar sampai menghasilkan uap dan dapi dibakar dalam percampurannya dengan udara. Titik nyala ini merupakan sifat fisika yang sangat penting untuk diketahui dalam mencegah kebakaran jika diekspresikan pada mesin yang beroperasi pada suhu yang tinggi serta kompresi yang tinggi.

Suhu Operasi Motor

Besarnya suhu yang terjadi pada akhir kompresi suatu motor dirumuskan sebagai berikut:

GEMA TEKNOLOGI Vol. 11 No. 1 Tahun 2000

40
\[T_e = T_i + e^{n1} \. \text{Sumber Petrovsky hal 29} \]

\[T_e = \text{Temperatur akhir kompresi} \]

(M.D.Artamonov, MM Morin)

Motor Bensin (600°K - 750°K)

Motor Diesel (750°K - 900°K)

\[T_a = \text{Temperatur awal kompresi} \]

(M.D.Artamonov, MM Morin)

Motor Bensin (340°K - 400°K)

Motor Diesel (310°K - 360°K)

\[e = \text{Perbandingan Kompresi} \]

(M.D.Artamonov, MM Morin)

Motor bensin.......6 - 12

Motor Diesel........16 - 20

Dengan adanya pembakaran bahan bakar suhu motor akan naik lagi. Dan besarnya suhu akhir pembakaran pada saat motor beroperasi di bawah beban penuh adalah:

Motor Bensin 2300°K – 2700°K

Motor Diesel 1800°K – 2200°K

Namun demikian suhu motor tersebut hanya terjadi pada ruang bakar sedangkan suhu yang sampai pada ruang engkol dan bantalan yang saling bergesekan menurun karena adanya pendinginan pada motor. Besarnya suhu ratarata gas pada berbagai motor dijelaskan dalam tabel 1.

Tabel 1. Suhu Gas Rata-Rata dalam Berbagai Jenis Motor

Sumber Indarto, 1995

<table>
<thead>
<tr>
<th>No</th>
<th>Jenis Motor</th>
<th>Suhu rata-rata Pada sirkuit Penuh °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Diesel dengan ruang bakar Swirl</td>
<td>690</td>
</tr>
<tr>
<td>2</td>
<td>Pesawat udara otto (bensin)</td>
<td>850</td>
</tr>
<tr>
<td>3</td>
<td>Motor bensin (otto otometal)</td>
<td>790</td>
</tr>
<tr>
<td>4</td>
<td>Dieselt turbocharge digatur nil</td>
<td>625</td>
</tr>
<tr>
<td>5</td>
<td>Automotif diesel turbocharge</td>
<td>630</td>
</tr>
<tr>
<td>6</td>
<td>Dieselt 2 jak kecepatan sedang</td>
<td>620</td>
</tr>
</tbody>
</table>

Pengaruh Suhu Kerja Operasi Motor

1. Pengaruh Pengoperasian Motor terhadap Suhu

Gaya gesek yang ditimbulkan dalam film minyak (lapisan minyak pelumas), dihubung menjadi kalor sehingga temperatur bantalan naik pada temperatur akhir kalor yang dikembangkan adalah sama dengan kalor yang dilepaskan. Dari grafik 1 peningkatan temperatur digambarkan secara grafis untuk berbagai beban pada jumlah putaran yang bertambah besar.

Garis lengkung diambil dari bantalan dengan d = 125 mm dan l = 120 mm. Batas minimum terlihat pada sebelah kiri dalam grafik termasuk dalam putaran peralihan \(n_o \). Sekalipun koefisien gesek rendah (berkisar antara \(\pm 2.10^{-5} \) pada beban tertinggi sampai \(\pm 7.10^{-5} \) pada beban rendah) namun kenaikan temperatur ini meningkat karena temperatur minyak pelumas ini harus dibatasi pada kondisi yang baik \(\pm 60°C \), maka minyak pelumas tersebut harus didinginkan agar tidak terlalu cepat menur (teroksida terlalu cepat).

Peningkatan minyak pelumas dilakukan dengan mengalirkan minyak pelumas melalui pendingin minyak pelumas yang kemudian disirkulasikan kembali dalam sistem pelumasan.

Grafik 1. Hubungan antara kenaikan temperatur dan Jumlah putaran

Sumber J.C Stolk, C Kros, Hendarsin, 1984

2. Pengaruh Suhu Terhadap Viskositas Minyak Pelumas

Sebuah motor yang beroperasi memerlukan pelumas untuk melapisi bagian-bagian yang bergesekan. Pada saat minyak pelumas digunakan untuk melumasi dan suhu motor mulai meningkat akibat adanya pembakaran bahan bakar, viskositas minyak pelumas mulai berubah.

Pengukuran viskositas minyak pelumas pada mulanya sejumlah zat cair tertentu dialirkan memalu sebuah pipa kecil yang sempit dan waktu yang diperlukan itu pengaliran tersebut yang digunakan sebagai perbandingan kekentalan (viskositas).

Pengaruh Suhu Kerja Mesin (Ireng S. A.) 41
Dari cara ini timbul bermacam-macam satuan untuk viskositas yang masih banyak dipakai yaitu:
- Derajat Engler yang diterapkan di Eropa
- Detik Redwood yang diterapkan di Inggris
- Detik Saybolt yang digunakan di Amerika

Kekentalan atau viskositas minyak pelumas diukur dalam satuan viskositas dinamik dan viskositas kinematik. Pada semua jenis minyak pelumas viskositasnya sangat menurun kalau temperatur dinaikan. Jadi informasi tentang viskositas harus selalu disertai dengan temperatur dimana harga ini berlaku. Keterangan pada temperatur dinyatakan dengan indek viskositas (V.I) antara 0 sampai dengan 100.

Dalam grafik 2 dilukiskan viskositas untuk beberapa jenis minyak pelumas bergantung pada temperatur.
Dalam grafik tersebut ditunjukkan sebuah skala untuk viskositas dalam derajat Engler (°E) pada 50°C.
Garis 1 berlaku untuk minyak pelumas yang sangat tipis.
Garis 2 berlaku untuk minyak mesin tipis yang diterapkan pada bantalan mesin listrik dan sebagainya.
Garis 3 berlaku untuk minyak mesin kental seperti yang dipergunakan dalam transmisi serta untuk motor bakar (bensin dan diesel).
Garis 6 dipergunakan untuk mesin yang bertemperatur sangat tinggi seperti misalnya motor pesawat terbang.

Grafik 2. Viskositas 6 Jenis Minyak Pelumas untuk Bantalan Luncur Viskositas Kinematik Berlaku untuk \(\rho = 0.9 \text{ g/cm}^3 \)
Sumber Jac Stolk Jr, C Kros Ir, Hendarsin, 1984

GEMA TEKNOLOGI Vol. 11 No. 1 Tahun 2000
KESIMPULAN

- Pada motor yang beroperasi secara kontinyu pada putaran yang tinggi akan meningkatkan suhu minyak pelumas.
- Suhu operasi motor yang tinggi akan menurunkan viskositas minyak pelumas, sehingga daya lumasnya menurun.
- Suhu yang tinggi pada operasi yang kontinyu akan memperpendek umur minyak, sebab proses oksidasi akan berlangsung dengan cepat.
- Dengan demikian perlu dikaji lebih lanjut pengaruh proses oksidasi terhadap ketahanan minyak pelumas diganti jika dipakai pada motor yang beroperasi kontinyu.

DAFTAR PUSTAKA

