PEMODELAN GENERAL REGRESSION NEURAL NETWORK UNTUK PREDIKSI TINGKAT PENCEMARAN UDARA KOTA SEMARANG

Warsito , Budi and Rusgiyono, Agus and Amirillah, M. Afif (2008) PEMODELAN GENERAL REGRESSION NEURAL NETWORK UNTUK PREDIKSI TINGKAT PENCEMARAN UDARA KOTA SEMARANG. Media Statistika, 1 (1). pp. 43-51. ISSN 1979-3693

[img]
Preview
PDF
271Kb

Abstract

This paper is discuss about General Regression Neural Network (GRNN) modelling to predict time series data, i.e. the air pollution rate in Semarang City comprises the floating dust, carbon monoxide (CO) and nitrogen monoxide (NO). The GRNN model have four processing layer that are input layer, pattern layer, summation layer and output layer. The input variable is determined by the ARIMA model. The result of GRNN modelling shows that the network have a good performance both at predict in sample and predict out of sample, that can be seen from the mean square error. Key Words : GRNN, predict, air pollution

Item Type:Article
Subjects:Q Science > Q Science (General)
Divisions:Faculty of Science and Mathematics > Department of Statistics
ID Code:32677
Deposited By:INVALID USER
Deposited On:30 Jan 2012 10:23
Last Modified:30 Jan 2012 10:23

Repository Staff Only: item control page