HALAMAN PENGESAHAN

LEMBAR 1

Judul Skripsi : METODE DEKOMPOSISI LOKAL PRIMAL UNTUK PROGRAM LINIER YANG BERBENTUK DUAL BLOCK ANGULAR

Nama : KARTINAH

NIM : J 101 91 0528

Jurusan : MATEMATIKA

Telah lulus ujian Sarjana pada tanggal 12 Januari 1999.

Semarang, Januari 1999

Panitia Penguji Ujian Sarjana
Jurusan Matematika

Ketua,

Drs. DJUWANDI SU
NIP. 130 810 410
HALAMAN PENGESAHAN

LEMBER 2

Judul Skripsi : METODE DEKOMPOSISI LOKAL PRIMAL UNTUK PROGRAM LINIER YANG BERBENTUK DUAL BLOCK ANGULAR

Nama : KARTINAH

NIM : J 101 91 0528

Jurusan : MATEMATIKA

Telah selesai dan layak mengikuti ujian Sarjana.

Semarang, Januari 1999

Dosen Pembimbing I

Drs. DJUWANDI, SU
NIP. 130 810 410

Dosen Pembimbing II

Dra. SUNARSIH, MSi
NIP. 131 626 756
KATA PENGANTAR

Puji syukur kami panjatkan kehadirat Allah SWT karena hanya dengan izin-Nya tercapailah kehendak kami untuk menyusun tugas akhir ini.

Tugas akhir ini berjudul "Metode Dekomposisi Lokal Primal untuk Program Linier yang berbentuk Dual Block Angular", disusun guna melengkapi syarat untuk mendapatkan gelar Sarjana Strata Satu pada Jurusan Matematika Fakultas MIPA Universitas Diponegoro Semarang.

Mengingat terbatasnya kemampuan dan pengetahuan kami tentunya tugas akhir ini masih jauh dari sempurna. Maka dari itu kami sangat mengharapkan saran dan kritik demi sempurnanya tulisan ini.

Pada kesempatan ini, perkenankanlah penulis mengucapkan terima kasih kepada:
1. Drs. Hardjito, ketua Jurusan Matematika Fakultas MIPA Undip.
2. Drs. Djuwandi, SU selaku dosen Pembimbing Utama yang telah berkenan memberikan bimbingan dan pengarahan hingga selesai tugas akhir ini.
3. Dra. Sunarsih, MSi selaku dosen Pembimbing II yang dengan sabar memberikan bimbingan dan pengarahan hingga selesai tugas akhir ini.
4. Suami dan orang tua yang telah membantu dan memberi dorongan baik moral maupun material.

Semoga tulisan ini bermanfaat untuk pengembangan ilmu pengetahuan Alam, khususnya Matematika serta berguna bagi para pembaca.

Semarang, Januari 1999

Penulis
DAFTAR ISI

<table>
<thead>
<tr>
<th>Halaman</th>
<th>Bab II TEORI PENUNJANG</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BAB II TEORI PENUNJANG</td>
</tr>
<tr>
<td>2.1</td>
<td>Vektor dan Matriks</td>
</tr>
<tr>
<td>3</td>
<td>2.1.1. Vektor</td>
</tr>
<tr>
<td>3</td>
<td>2.1.2. Matriks</td>
</tr>
<tr>
<td>6</td>
<td>2.2. Masalah Program Linier</td>
</tr>
<tr>
<td>13</td>
<td>2.3. Himpunan Konveks</td>
</tr>
<tr>
<td>15</td>
<td>2.4. Dualitas Dalam Program Linier</td>
</tr>
<tr>
<td>21</td>
<td>2.5. Masalah Program Linier Dalam Bentuk Matriks</td>
</tr>
<tr>
<td>22</td>
<td>2.6. Metode Simpleks</td>
</tr>
<tr>
<td>25</td>
<td>2.7. Program Linier Parametrik Dengan Variasi Linier Pada b</td>
</tr>
<tr>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Halaman</th>
<th>Bab III METODE DEKOMPOSISI LOKAL PRIMAL UNTUK PROGRAM LINIER YANG BERBENTUK DUAL BLOCK ANGULAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>3.1. Dekomposisi Lokal Untuk Sistem Dual Block Angular</td>
</tr>
<tr>
<td>46</td>
<td>3.2. Metode Parametrik Primal</td>
</tr>
<tr>
<td>49</td>
<td>3.3. Metode Dekomposisi Lokal Primal</td>
</tr>
<tr>
<td>58</td>
<td>3.4. Contoh Perhitungan Metode Dekomposisi Lokal Primal Untuk Sistem Program Linier Berbentuk Dual Block Angular</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Halaman</th>
<th>Bab IV KESIMPULAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Halaman</th>
<th>DAFTAR PUSTAKA</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td></td>
</tr>
</tbody>
</table>
DAFTAR SIMBOL

\[S \] : Daerah fisibel dalam ruang keputusan.
\[S = \{ x \in \mathbb{R}^n | Ax = b, x \geq 0, b \in \mathbb{R}^n \} \].

\[f \] : Fungsi sasaran pada masalah program linier.

\[A \] : Matriks berukuran m \times n.

\[b_i \] : Konstanta kendala ke-i.

\[A^T \] : Transpose dari matriks A.

\[R^n \] : Ruang keputusan berdimensi n.

\[x^e \] : Titik Ekstrim.

\[I_m \] : Matriks identitas berukuran m \times m.

\[x, u, v, w \] : Vektor.

\[A^{-1} \] : Invers dari matriks A.

\[\lambda_i \] : Koefisien dari vektor \(x_i \) dimana \(0 \leq \lambda_i \leq 1, i = 1, \ldots, n \).

\[V \] : Ruang vektor

\[R_i \] : Nilai kritis

\[b \] : Vektor kolom dari konstanta pada kendala

\[\theta \] : Parameter dari program linier parametrik

\[p \] : Vektor baris dari konstanta pada fungsi sasaran

\[\alpha_i \] : Skalar

\[m \] : Banyaknya kendala pada masalah program linier

\[n \] : Banyaknya variabel pada masalah program linier

\[x^N_0 \] : Variabel \(x_0 \) non basis

\[x^B_0 \] : Variabel \(x_0 \) basis

\[A_{0b} \] : Matriks \(A_0 \) yang elemen-elemennya merupakan harga dari variabel-variabel basis

\[A_{0n} \] : Matriks \(A_0 \) yang elemen-elemennya merupakan harga dari variabel-variabel non basis

\[\alpha^n \] : Kolom pada \(A_{0n} \) yang berkaitan dengan variabel \(x_h \)

\[x_h \] : Variabel basis baru dalam sub masalah pokok

\[A_k \] : Matriks A dari sub masalah independen ke-k; \(k = 1, \ldots, q \).
a^{kn} : Kolom pada A_k yang berkaitan dengan variabel x_h

A_{kb} : Matriks A_k yang elemen-elemennya merupakan harga dari variabel-variabel basis

A_{kn} : Matriks A_k yang elemen-elemennya merupakan harga dari variabel-variabel non basis