RANCANGAN FLEKSIBILITAS INTALASI PIPA

Murni
Program Diploma III Teknik Mesin
Fakultas Teknik Universitas Diponegoro

Abstracts

Murni, in paper 'Accretion of length or decrease of effect expansion of pipe at one particular pipe installation will result damage of installation. To avoid that thing is hence an pipe installation require to be reckoned or planned naturely so that pipe installation earn flexible so that do not destroy in the event of accretion of length and or decrease.'

I. PENDAHULUAN

Masamalat pada umumnya kurang memahami bahwa instalasi perpipaan akan rusak apabila tidak diseduhkan tempat untuk ekspansi akibat pertambahan panjang atau penurunan pipa tersebut. Panjang pipa akan berubah dengan berubahnya temperatur pipa dan temperatur pipa itu sendiri dipengaruhi oleh besarnya temperatur fluida di dalam serta temperatur sekelilingnya. Pertambahan panjang atau penurunan pipa selain disebabkan oleh perubahan temperatur pipa juga tergantung pada jenis bahan pipa serta panjang pipa itu sendiri.

Fleksibilitas pipa ini bertujuan untuk menjaga agar instalasi pipa tidak rusak yaitu terjadi perubahan bentuk atau pembengkakan akibat perubahan suhu pertambahan panjang maupun penyusutan setiap jahur perpipaan terutama jang-jang tertentu sejauh jarak yang disambung dengan nozzle penutupan.

Untuk menjaga agar instalasi pipa tidak rusak bila terjadi pertambahan atau penurunan pipa, busana instalasi pipa perlu ditambah dengan sambungan pipa ekspansi. Sambungan ini untuk menyerap perubahan panjang pipa tersebut. Namun ada kalanya pipa ekspansi ini dapat dihilangkan. Asalisa instalasi pipa tersebut sudah fleksibel menurut perhitungan, sehingga dapat mengurangi anggaran pembuatan instalasi.

Untuk itu kami ingin menjelaskan bagaimana cara menghitung dan membuat instalasi pipa agar dapat fleksibel. Mudah-mudahfahalan ini dapat meminjam pengetahuan bagi para pembaca pada umumnya dan khususnya bagi yang ingin membuat instalasi perpipaan.

II. PERUBAHAN PANJANG PIPA

Setiap benda apabila dipansikan akan memuai atau mengembang, begitu pula apabila didinginkan dari suhu normal akan menyusut, mengembang dan menyusutnya suatu benda tergantung pada penambahan atau penurunan temperatur yang diberikan pada benda tersebut. sebagai contoh bila benda menampani panjang L. dengan kedua ujungnya disertai mendapat pengaruh panas. bila koefisien muai panjang α dan kenaikan temperatur ∆T maka benda tersebut akan bertambah panjang ∆L = α . ∆T . L

Begitu pula dengan pipa, panjang pipa akan berubah dengan berubahnya temperatur pipa tersebut dan temperatur pipa itu sendiri dipengaruhi oleh besarnya temperatur fluida yang ada di dalam tersebut serta temperatur sekelilingnya. Perpanjangan pipa selain disebabkan oleh perubahan temperatur pipa juga tergantung pada jenis bahan pipa itu sendiri.

Perpanjangan pipa dapat dihitung dengan rumus sebagai berikut :

\[\gamma = \frac{L \cdot C \cdot \Delta T}{\gamma} \]

Dimana :
- \(\gamma \) : perpanjangan pipa (mm)
- \(L \) : panjang pipa mula-mula (m)
- \(C \) : koefisien ekspansi linier (mm / mm\(^2\) C)
- \(\Delta T \) : perubahan temperatur

III. PERHITUNGAN FLEKSIBILITAS PIPA

Untuk memudahkan perhitungan dibutuhkan data dari bahan yang akan digunakan dalam instalasi perpipaan misalahnya ketebalan pipa, bahan pipa, gaya-gaya, tekanan, temperatur, serta fluida yang berada dalam pipa. disamping itu tidak lalai pentingnya data-data peralatan dari pembuat atau penjual, terutama batas-batas yang diijinkan, baik gaya, momen lengan dan tegangan.

Metode Perhitungan Fleksibilitas pipa haruslah didasarkan :
- Batas angker diketahui atau disusunkan
- Perencanaan temperatur, koefisien ekspansi baik untuk jarak utama atau cabang
- Perencanaan pada kondisi khusus seperti start up, silds operasi dan lain-lain
Tabel 1. Koefisien ekspansi linier pipa

<table>
<thead>
<tr>
<th>Bahan pipa</th>
<th>Koefisien ekspansi Linier (mm/mm°C)</th>
<th>Ekspansi pipa Satu meter dengan kenaikan 100°C (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Besi rol</td>
<td>0.000012348</td>
<td>1.2348</td>
</tr>
<tr>
<td>Baja</td>
<td>0.000010980</td>
<td>1.0980</td>
</tr>
<tr>
<td>Best cor</td>
<td>0.000010620</td>
<td>1.0620</td>
</tr>
<tr>
<td>Tembaga</td>
<td>0.000017100</td>
<td>1.7100</td>
</tr>
<tr>
<td>Kuningan</td>
<td>0.000018720</td>
<td>1.8720</td>
</tr>
<tr>
<td>Timah hitam</td>
<td>0.000028260</td>
<td>2.8620</td>
</tr>
<tr>
<td>Baja tahan karat</td>
<td>0.000017300</td>
<td>1.7300</td>
</tr>
</tbody>
</table>

(sus 304)

Tabel 2. Pertumbuhan panjang berbagai macam pipa pada beberapa Perubahan Temperatur (dalam mm setiap 100 m Perpanjangan Ekspansi)

<table>
<thead>
<tr>
<th>Jenis pipa</th>
<th>Koefisien Ekspansi (mm/mm°C)</th>
<th>Pipa baja</th>
<th>Pipa Tembaga</th>
<th>Pipa Kuningan</th>
<th>Pipa baja</th>
<th>Tahan karat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perubahan</td>
<td>20</td>
<td>0.00001098</td>
<td>0.00001710</td>
<td>0.00001872</td>
<td>0.00001730</td>
<td></td>
</tr>
<tr>
<td>Temperatur</td>
<td>40</td>
<td>21.96</td>
<td>34.20</td>
<td>37.44</td>
<td>24.60</td>
<td></td>
</tr>
<tr>
<td>°C</td>
<td>60</td>
<td>43.92</td>
<td>68.40</td>
<td>74.88</td>
<td>69.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>65.88</td>
<td>102.60</td>
<td>112.32</td>
<td>103.80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>87.84</td>
<td>136.80</td>
<td>149.76</td>
<td>138.40</td>
<td></td>
</tr>
</tbody>
</table>

Tabel 3. Panjang pipa yang menimbulkan Ekspansi 38 mm

<table>
<thead>
<tr>
<th>Perubahan Temperatur (°C)</th>
<th>Panjang pipa (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>43.0</td>
</tr>
<tr>
<td>100</td>
<td>34.5</td>
</tr>
</tbody>
</table>

Adakalanya perpanjangan pipa dapat diatasi, karena ajung pipa yang lain dapat bergerak bebas (tak terikat) namun begitu ukuran instalasi pipa perlu perhatian secara cermat agar supaya tidak memaksakan instalasi pipa itu sendiri bila terjadi pemuaian.

* Instalasi bentuk lengkungan L

\[
h = \frac{0.762}{1000} D_o L \cdot \Delta T \text{ meter}
\]

\[
L_{\text{instalasi}} = \frac{0.5048 D_o \cdot \Delta T}{D_o}
\]

dimana :
- \(h \) : panjang pipa yang pendek (m)
- \(D_o \) : diameter luas pipa (inch)
- \(L \) : panjang pipa yang panjang (m)
- \(\Delta T \) : perbedaan temperatur (°F)

* Instalasi Pipa berbentuk lengkungan Z

Gambar 1. Instalasi pipa bentuk lengkungan L

Gambar 2. Instalasi pipa berbentuk lengkungan Z

GEMA TEKNOLOGI Vol 14 No. 4 Period October 2005 - April 2006 167
Bentuk seperti ini dapat dihitung dengan rumus:

\[
h'_{\text{c}} = \frac{0.762}{1000} D_o \cdot L \cdot \Delta T \text{ meter}
\]

\[
h'_{\text{r}} = 0.0276 \sqrt[3]{D_o \cdot L \cdot \Delta T} \text{ meter}
\]

\[
L_{\text{sec}} = \frac{0.3048 D_o \cdot \Delta T}{C'}
\]

syarat: \(B/C \geq 4 \)

Dimana:

\(h \) : panjang pipa (m)
\(D_o \) : diameter luas pipa (inch)
\(L \) : panjang pipa yang panjang (m)
\(B \) : B + C
\(\Delta T \) : perbedaan temperatur (\(^\circ\)F)
\(B & C \) : masing-masing panjang pipa mendatar (m)

- Instalasi pipa berbentuk lengkungan U dengan kedua kaki yang sama.

\[
h'_{\text{c}} = \frac{0.488}{1000} D_o \cdot L \cdot \Delta T \text{ meter}
\]

\[
h'_{\text{r}} = 0.0222 \sqrt[3]{D_o \cdot L \cdot \Delta T} \text{ meter}
\]

\[
L_{\text{sec}} = \frac{625(h')}{0.3048 D_o \cdot \Delta T} \text{ meter}
\]

- Instalasi pipa berbentuk lengkungan dengan kedua kaki yang tak sama panjang.

\[
h'_{\text{c}} = 0.122 \frac{D_o \cdot L \cdot \Delta T \text{ meter}}{1000}
\]

\[
h'_{\text{r}} = 0.011 \sqrt[3]{D_o \cdot L \cdot \Delta T} \text{ meter}
\]

\[
L_{\text{sec}} = \frac{2500(h')}{0.3048 D_o \cdot \Delta T} \text{ meter}
\]

\[
h_{\text{sec}} = 0.5h
\]

\[
W = \frac{0.5h}{\text{meter}}
\]

- Instalasi pipa berbentuk lurus panjang

Untuk pipa panjang diperlukan sambungan yang dapat menyerap perubahan panjang karena perubahan suhu. Sambungan ini dapat berupa loop atau sambungan ekspansi yang banyak dijalur di pasaran umum, adanya jenis dan kemampuan menyerap perpanjangan perpindahan, serta kemampuan menerima tekanan, temperatur dan bahan bermacam-macam sehingga kita bisa memiliki sesuai dengan yang kita kehendaki. Sedangkan untuk sambungan ekspansi jenis loop dapat dihitung dengan rumus sebagai berikut:

\[
h'_{\text{c}} = 0.640 D_o (L - L_e) \cdot \Delta T \text{ meter}
\]

\[
h'_{\text{r}} = 0.0253 \sqrt[3]{D_o (L - L_e)} \cdot \Delta T \text{ meter}
\]

\[
(L - L_e)_{\text{sec}} = 0.3048 D_o \cdot \Delta T
\]

- Instalasi pipa berbentuk lurus panjang

Gambar 3. Instalasi pipa berbentuk lengkung U

Gambar 4. Instalasi berbentuk lengkungan dengan kedua kaki tak sama panjang

Gambar 5. Sambungan ekspansi jenis loop

Gambar 6. Instalasi berbentuk lurus panjang

IV. JUMLAH SAMBUNGAN EKSPANSI

Jumlah sambungan ekspansi yang harus dipasang pada suatu sistem pipa tergantung pada suatu sistem pipa tergantung pada:

- Bahan sistem pipa
- Besarnya perubahan panjang
- Jenis sambungan ekspansi
Jumlah sambungan ekspansi dapat ditentukan dengan rumus:

\[n = \frac{\gamma}{\sigma} \]

dimana:
- \(n \) = jumlah sambungan ekspansi
- \(\gamma \) = perubahan panjang (mm)
- \(\sigma \) = ekspansi maksimum (mm) yang dapat disorap sambungan

Selain menggunakan rumus diatas dapat juga diperiksan jumlah sambungan ekspansi secara kasar sebagai berikut: biasanya sambungan ekspansi dipasang untuk menyerap perpanjangan atau perpindahan pipa sebesar 30 mm untuk sambungan ekspansi type tunggal, jarak antara dua sambungan berurutan sekitar 30 m untuk pipa baja dan sekitar 20 m untuk pipa tembaga, sedang untuk pipa tegak biasanya dipasang sebuah sambungan ekspansi setiap 45 m.

V. PEMASANGAN SAMBUNGAN EKSPANSI

Untuk menghindari terjadinya kondensasi dan pengumpulan air (untuk asap) pada sambungan ekspansi loop, maka posisi loop harus diletakkan diatas atau menyudut ke atas dan juga pemasangan sambungan ekspansi tidak dapat dipisahkan dengan pemecahan instalasi pipanya sendiri.

Hal-hal yang perlu diperhatikan dalam pemasangan pipa adalah sebagai berikut:
- Penggantungan atau penempatan penggantungan atau penumpu pipa harus mampu menerima beban berat pipa ditambah dengan perlengkapan seperti: katup, isolasi dan isi pipa itu sendiri.
- Lokasi Penggantungan

![Gambar 6. Contoh pengikatan pipa dan sambungan ekspansi dengan penggantungan](image)

![Gambar 7. Contoh penggantungan dan penumpu bagian bawah pipa tegak](image)

- Jarak antar penggantungan
Jarak antar penggantungan sebaiknya dibuat seperti yang dilihat di tabel di bawah ini:

<table>
<thead>
<tr>
<th>Klasifikasi</th>
<th>Keterangan</th>
<th>Jarak tempuran</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipa</td>
<td>Pipa harus</td>
<td>Satu titik setiap batang pipa</td>
</tr>
<tr>
<td>Tegak</td>
<td>Pipa disambung</td>
<td>Dua potong</td>
</tr>
<tr>
<td></td>
<td>Pipa tegak</td>
<td>Satu titik, salah satu batang</td>
</tr>
<tr>
<td>Pipa</td>
<td>Pipa tegak</td>
<td>Satu titik, salah satu barang di tengah</td>
</tr>
<tr>
<td>Mendatar</td>
<td>Pipa tegak</td>
<td>Pipa baja, diameter:</td>
</tr>
<tr>
<td></td>
<td>Pipa disambung</td>
<td>1.2 m atau lebih setiap lantai</td>
</tr>
<tr>
<td>Pipa</td>
<td>Pipa tegak</td>
<td>20 mm atau kurang</td>
</tr>
<tr>
<td></td>
<td>Pipa tegak</td>
<td>25 – 40 mm</td>
</tr>
<tr>
<td>Pipa</td>
<td>Pipa tegak</td>
<td>30 – 60 mm</td>
</tr>
<tr>
<td>Mendatar</td>
<td>Pipa tegak</td>
<td>90 – 150 mm</td>
</tr>
<tr>
<td></td>
<td>Pipa tegak</td>
<td>200 mm dan lebih</td>
</tr>
<tr>
<td>Pipa</td>
<td>Pipa tegak</td>
<td>1.0 m atau kurang</td>
</tr>
<tr>
<td>Mendatar</td>
<td>Pipa tegak</td>
<td>2.0 m atau kurang</td>
</tr>
</tbody>
</table>

GEBA TEKNOLOGI Vol 14 No. 4 Periode Oktober 2005 - April 2006
<table>
<thead>
<tr>
<th>Pipa timah hitam</th>
<th>Dalam hal pipa berubah bentuk, ditumpu dengan talang dan pelat besi galvanis sebelah 0,4 mm atau lebih pada seluruh panjangnya, dan ditumpu setiap jarik 1,5 m atau kurang</th>
</tr>
</thead>
<tbody>
<tr>
<td>(lebih dari 0,5 m panjang)</td>
<td></td>
</tr>
<tr>
<td>Pipa tembaga, diameter :</td>
<td>1,0 m atau kurang</td>
</tr>
<tr>
<td>20 mm</td>
<td>1,5 m atau kurang</td>
</tr>
<tr>
<td>25 – 40 mm</td>
<td>2,0 m atau kurang</td>
</tr>
<tr>
<td>50 mm</td>
<td>2,5 m atau kurang</td>
</tr>
<tr>
<td>65 – 100 mm</td>
<td>3,0 m atau kurang</td>
</tr>
<tr>
<td>125 mm dan lebih</td>
<td></td>
</tr>
<tr>
<td>Pipa PVC, diameter :</td>
<td>0,75 m atau kurang</td>
</tr>
<tr>
<td>< 16 mm</td>
<td>1,0 m atau kurang</td>
</tr>
<tr>
<td>20 – 40 mm</td>
<td>1,2 m atau kurang</td>
</tr>
<tr>
<td>50 mm</td>
<td>1,5 m atau kurang</td>
</tr>
<tr>
<td>65 – 125 mm</td>
<td>2,0 m atau kurang</td>
</tr>
<tr>
<td>150 mm dan lebih</td>
<td></td>
</tr>
</tbody>
</table>

- Pemasangan pada pengantung (penumpu)
 Pipa serta sambungan ekspansi harus dipasang pada tempat dan cara yang tepat agar dapat berfungsi dengan baik.
 Pemasangan pipa perlu sedemikian rupa agar dapat bergerak dengan bebas sehingga perpanjangan atau perpendekannya dapat disesuaikan oleh sambungan ekspansi tanpa menimbulkan kemungkinan kerusakan.

VI. KESIMPULAN
- Suatu instalasi perpipaan memerlukan perencanaan dan pemasangan yang baik untuk menghindari kerusakan akibat pemanasan.
- Sambungan ekspansi tak diperlukan apabila dalam perencanaan instalasi pada pipa tersebut sudah fleksibel.
- Pemilihan sambungan ekspansi perlu disesuaikan dengan keadaan di lapangan.
- Sambungan ekspansi tak akan berfungsi maksimum bila salah dalam pemasangannya.

DAFTAR PUSTAKA