BAB II
TEORI PENUNJANG

2.1. Ruang Vektor Atas Field Bilangan Riil (R)

Misalkan suatu himpunan \(V \) dan suatu field \(R \), didefinisikan operasi penjumlahan terhadap elemen-elemen \(V \) dan perkalian elemen-elemen \(V \) dengan elemen \(R \) (disebut perkalian skalar). Maka \(V \) disebut ruang vektor di atas field \(R \) bila terpenuhi :

(1). Untuk setiap \(u,v \in V \) dan \(k \in R \) maka \(u+v \in V \) dan \(ku, kv \in V \) (Tertutup terhadap operasi penjumlahan dan perkalian skalar)

(2). Untuk setiap \(u,v,w \in V \) maka \((u + v) + w = u + (v + w) \)

(3). Untuk setiap \(u,v \in V \) dan \(k \in R \) maka \(k(u + v) = ku + kv \)

(4). Terdapat \(0 \in V \) disebut vektor nol, sedemikian hingga untuk setiap \(u \in V \) berlaku \(0 + u = u + 0 = u \)

(5). Untuk masing-masing \(u \in V \) terdapat \(-u \in V \) sedemikian sehingga \(-u + u = u + (-u) = 0 \)

(6). Untuk setiap \(u,v \in V \) maka \(u + v = v + u \)

(7). Untuk setiap \(u \in V \) dan \(k,l \in R \) berlaku \((k + l)u = ku + lu \)

(8). Untuk setiap \(u \in V \) dan \(k,l \in R \) berlaku \((kl)u = k(lu) \)

(9). Untuk setiap \(u \in V \) berlaku \(1u = u \), dimana 1 adalah elemen satuan dari \(R \)

Anggota-anggota dari suatu ruang vektor disebut vektor.
2.2. Subruang Vektor

Definisi 2.2.1.

Subhimpunan W dari sebuah ruang vektor V dinamakan subruang \textit{(subspace)} V jika W itu sendiri adalah ruang vektor di bawah penambahan dan perkalian skalar yang didefinisikan pada V.

Teorema 2.2.1.

Jika W adalah himpunan dari satu atau lebih vektor dari sebuah ruang vektor V, maka W adalah subruang dari V bila hanya bila kondisi-kondisi berikut berlaku:

(a). Jika u dan v adalah vektor-vektor pada W, maka $u + v$ terletak di W.

(b). Jika k adalah sebarang skalar dan u adalah sebarang vektor pada W, maka ku berada di W.

Bukti.

Kondisi (a) dan (b) sering digelaskan dengan menyatakan bahwa W tertutup dibawah penambahan dan perkalian skalar. Jika W adalah subruang dari V, maka semua aksioma ruang vektor dipenuhi khusunya aksioma 1 berlaku. Sebaliknya, anggap kondisi (a) dan kondisi (b) berlaku. Karena kondisi ini adalah aksioma 1 untuk ruang vektor, maka hanya perlu memperlihatkan bahwa W memenuhi aksioma-aksioma selebihnya. Aksioma 2,3,6,7,8, dan 9 secara otomatis terpenuhi oleh vektor pada V. Maka untuk melengkapi bukti tersebut, kita hanya perlu membuktikan bahwa aksioma 4 dan 5 dipenuhi oleh W. Misalkan u sebarang vektor pada W. Menurut kondisi (b) maka ku berada di W untuk setiap skalar k.

Dengan membuat skalar $k = 0$ maka jelaslah bahwa $0u = 0$ berada di W dan dengan membuat $k = -1$ maka jelaslah bahwa $(-1)u = -u$ berada di W.
Setiap ruang vektor pada V mempunyai paling sedikit dua subruang. V sendiri adalah sebuah subruang dan himpunan \{0\} yang terdiri dari vektor nol saja pada V yang merupakan sebuah subruang yang dinamakan subruang nol (zero subspace).

Definisi 2.2.2.

Sebuah vektor \(w\) dinamakan kombinasi linier dari vektor-vektor \(v_1, v_2, \ldots, v_r\) jika vektor tersebut dapat diungkapkan dalam bentuk:

\[w = k_1v_1 + k_2v_2 + \ldots + k_rv_r \]

dimana \(k_1, k_2, \ldots, k_r\) adalah skalar.

Conto 2.2.1.

Misal vektor-vektor \(u = (1, 2, -1)\) dan \(v = (6, 4, 2)\) di \(\mathbb{R}^3\). Dapat ditunjukkan bahwa \(w = (9, 2, 7)\) merupakan kombinasi linier \(u\) dan \(v\). Supaya merupakan kombinasi linier \(u\) dan \(v\), harus ada skalar \(k_1\) dan \(k_2\) sehingga \(w = k_1u + k_2v\), yaitu:

\[
(9, 2, 7) = k_1(1, 2, -1) + k_2(6, 4, 2)
\]

\[
(9, 2, 7) = (k_1 + 6k_2, 2k_1 + 4k_2, -k_1 + 2k_2).
\]

Penyamaan komponen-komponen yang bersesuaian memberikan

\[
\begin{align*}
k_1 + 6k_2 &= 9 \\
2k_1 + 4k_2 &= 2 \\
-k_1 + 2k_2 &= 7
\end{align*}
\]

dengan memecahkan sistem ini akan menghasilkan \(k_1 = -3\) dan \(k_2 = 2\) sehingga

\[w = -3u + 2v. \]
Definisi 2.2.3.
Jika v_1, v_2, \ldots, v_r adalah vektor-vektor pada ruang vektor V dan jika masing-masing vektor pada V dapat dinyatakan sebagai kombinasi linier v_1, v_2, \ldots, v_r maka dikatakan bahwa vektor-vektor ini merentang V.

Contoh 2.2.2.
Vektor vektor $i = (1,0,0)$, $j = (0,1,0)$ dan $k = (0,0,1)$ merentang R^3 karena setiap vektor (a,b,c) pada R^3 dapat ditulis sebagai:

$$(a,b,c) = ai + bj + ck$$
yang merupakan kombinasi linier i, j, dan k.

Teorema 2.2.2.
Jika v_1, v_2, \ldots, v_r adalah vektor-vektor terentang pada ruang vektor V maka:

(a). Himpunan W dari semua kombinasi linier v_1, v_2, \ldots, v_r adalah subruang V.

(b). W adalah subruang terkecil dari V yang mengandung v_1, v_2, \ldots, v_r dalam arti bahwa setiap subruang lain dari V yang mengandung v_1, v_2, \ldots, v_r harus mengandung W.

Bukti.

(a). Untuk memperlihatkan bahwa W adalah subruang V harus dibuktikan bahwa W tertutup dibawah penambahan dan perkalian skalar. Jika u dan v adalah vektor-vektor pada W maka

$$u = c_1v_1 + c_2v_2 + \ldots + c_rv_r$$
dan

$$v = k_1v_1 + k_2v_2 + \ldots + k_rv_r$$
dimana $c_1, c_2, \ldots, c_r, k_1, k_2, \ldots, k_r$ adalah skalar. Maka
\[u + v = (c_1 + k_1)v_1 + (c_2 + k_2)v_2 + \ldots + (c_r + k_r)v_r \]
dan untuk sembarang skalar \(k \),
\[ku = (kc_1)v_1 + (kc_2)v_2 + \ldots + (kc_r)v_r \]
Jadi \(u + v \) dan \(ku \) adalah kombinasi-kombinasi linier \(v_1, v_2, \ldots, v_r \) dan sebagai konsekuensinya maka \(u + v \) dan \(ku \) terletak di \(W \). Sehingga \(W \) tertutup dibawah penambahan dan perkalian skalar.

(b). Untuk \(W = \{ c_1v_1 + c_2v_2 + \ldots + c_rv_r \mid v_1, v_2, \ldots, v_r \in V, c_1, c_2, \ldots, c_r \in R \}, \) maka \(W \) direntang oleh \(v_1, v_2, \ldots, v_r \).

Setiap vektor \(v_i \in W \) adalah kombinasi-kombinasi linier \(v_1, v_2, \ldots, v_r \) karenanya dapat ditulis \(v_i = 0 v_1 + 0 v_2 + \ldots + v_i + \ldots + 0 v_r \), oleh karena itu subruang \(W \) mengandung setiap vektor \(v_1, v_2, \ldots, v_r \). Misalkan ambil \(K \) adalah subruang lain yang mengandung \(v_1, v_2, \ldots, v_r \). Karena \(K \) tertutup di bawah penambahan dan perkalian skalar, maka \(K \) harus mengandung semua kombinasi linier \(c_1v_1 + c_2v_2 + \ldots + c_rv_r \) dari \(v_1, v_2, \ldots, v_r \). Jadi setiap vektor \(W \) termuat dalam \(K \).

2.3. Kebebasan Linier

Definisi 2.3.1.

Jika \(S = \{ v_1, v_2, \ldots, v_r \} \) adalah himpunan vektor maka persamaan vektor \(k_1v_1 + k_2v_2 + \ldots + k_rv_r = 0 \) mempunyai paling sedikit satu pemecahan, yaitu \(k_1 = 0, k_2 = 0, \ldots, k_r = 0 \). Jika ini adalah satu-satunya pemecahan maka \(S \) dinamakan himpunan bebas linier (\textit{linierly independent}). Jika ada pemecahan lain maka \(S \) dinamakan himpunan tak bebas linier (\textit{linierly dependent}).
Contoh 2.3.1.

Himpunan vektor-vektor $S = \{v_1, v_2, v_3\}$ dimana $v_1 = \{2,-1,0,-3\}$, $v_2 = \{1,2,5,-1\}$, $v_3 = \{7,-1,5,8\}$ adalah himpunan tak bebas linier karena $3v_1 + v_2 - v_3 = 0$.

Contoh 2.3.2.

Tinjaualah vektor-vektor $i = \{1,0,0\}$, $j = \{0,1,0\}$ dan $k = \{0,0,1\}$ pada \mathbb{R}^3.

Persamaan vektor $k_1i + k_2j + k_3k = 0$ menjadi $k_1(1,0,0) + k_2(0,1,0) + k_3(0,0,1) = 0$

atau secara ekivalen menjadi $(k_1, k_2, k_3) = (0,0,0)$. Jadi $k_1 = 0$, $k_2 = 0$, dan $k_3 = 0$

sehingga himpunan $S = \{i, j, k\}$ bebas linier.

Teorema 2.3.1.

Jika r, $(r > 1)$ vektor $\{v_1, v_2, \ldots, v_r\}$ bergantung linier maka paling sedikit terdapat satu vektor dapat ditulis sebagai kombinasi linier dari vektor-vektor selebihnya.

Bukti.

Karena $\{v_1, v_2, \ldots, v_r\}$ bergantung linier, paling sedikit satu diantara skalar-skalar $\{k_1, k_2, \ldots, k_r\}$ tidak nol, misalnya k_p sedemikian sehingga $
k_1v_1 + k_2v_2 + \ldots + k_pv_p + \ldots + k_rv_r = 0.

diperoleh

$-k_pv_p = k_1v_1 + k_2v_2 + \ldots + k_rv_r$

dan karena $k_pv_p \neq 0$ diperoleh

$v_p = -\frac{k_1}{k_p}v_1 - \frac{k_2}{k_p}v_2 - \ldots - \frac{k_r}{k_p}v_r$

$= -\lambda_1v_1 - \lambda_2v_2 - \ldots - \lambda_rv_r.$

Jadi v_p kombinasi linier dari vektor selebihnya.
Teorema 2.3.2.
Jika satu diantara r vektor \{v_1, v_2, ..., v_r\} adalah kombinasi linier dari vektor selebihnya maka r vektor tersebut bergantung linier.

Bukti.
Misal \(v_p\) adalah kombinasi linier dari \{v_1, v_2, ..., v_r\} maka

\[v_p = k_1v_1 + k_2v_2 + \ldots + k_rv_r = 0.\]

Bila \(v_p\) pindah ruas, diperoleh

\[k_1v_1 + k_2v_2 + \ldots + k_pv_p + \ldots + k_rv_r = 0.\]

Jelas tidak semua koefisien \(k\) nol karena \(k_p = -1 \neq 0\), jadi r vektor tersebut bergantung linier.

Contoh 2.2.3.
Selidiki bahwa \(v_1 = (2,1,2), v_2 = (0,1,0)\) dan \(v_3 = (2,0,2)\) bergantung linier.

Berdasarkan teorema 2.3.2 diselidiki apakah salah satu diantara \(v_1, v_2, v_3\) kombinasi vektor selebihnya. Misal

\[v_1 = k_1v_2 + k_2v_3\]

atau

\[(2,1,2) = k_1(0,1,0) + k_2(2,0,2)\]

atau

\[2 = 0k_1 + 2k_2\]
\[1 = k_1 + 0k_2\]
\[2 = 0k_1 + 2k_2\]

terpenuhi \(k_1 = 1\) dan \(k_2 = 2\), berarti \(v_1\) kombinasi linier \(v_2\) dan \(v_3\). Sehingga \(\{v_1, v_2, v_3\}\) bergantung linier.
Teorema 2.3.2. tidak menyatakan kalau salah satu diantara r vektor tidak dapat dinyatakan sebagai kombinasi linier dari vektor-vektor selebihnya maka r vektor tersebut bebas linier.

Teorema 2.3.3.
Jika r vektor-vektor \(\{v_1, v_2, \ldots, v_r\} \) bebas linier dan \((r + 1)\) vektor-vektor \(\{v_1, v_2, \ldots, v_r, u\} \) bergantung linier maka u adalah kombinasi linier dari \(\{v_1, v_2, \ldots, v_r\} \).

Bukti.
Karena \(\{v_1, v_2, \ldots, v_r, u\} \) bergantung linier, pada persamaan

\[
k_1v_1 + k_2v_2 + \ldots + k_r v_r + k_{r+1}u = 0
\]

terdapat \(k_i \neq 0 \). Dalam hal ini haruslah \(k_{r+1}u \neq 0 \) karena bila tidak demikian terjadi kontradiksi yaitu \(k_i \neq 0 \) adalah diantara \(i = 1,2,\ldots, r \) yang mana

\[
k_1v_1 + k_2v_2 + \ldots + k_r v_r + 0u = 0
\]

\[
k_1v_1 + k_2v_2 + \ldots + k_r v_r = 0
\]

berakibat \(\{v_1, v_2, \ldots, v_r\} \) bergantung linier. Maka bila \(k_{r+1}u \) pindah ruas diperoleh

\[
-k_{r+1}u = k_1v_1 + k_2v_2 + \ldots + k_r v_r
\]

\[
u = -\frac{k_2}{k_{r+1}} v_1 - \frac{k_2}{k_{r+1}} v_2 - \ldots - \frac{k_r}{k_{r+1}} v_r
\]

\[
u = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_r v_r
\]

Jadi u adalah kombinasi linier dari \(\{v_1, v_2, \ldots, v_r\} \).
2.4. Basis Dan Dimensi

Definisi 2.4.1.

Jika \(V \) adalah sebarang ruang vektor dan \(S = \{v_1, v_2, \ldots, v_i\} \) merupakan himpunan berhingga dari vektor-vektor pada \(V \), maka \(S \) dinamakan basis untuk \(V \) jika:

(i). \(S \) bebas linier

(ii). \(S \) merentang \(V \)

Contoh 2.4.1.

Misalkan \(v_1 = (1,2,3), v_2 = (2,9,0) \) dan \(v_3 = (3,3,4) \)

\(S = \{v_1,v_2,v_3\} \) adalah basis untuk \(\mathbb{R}^3 \).

Untuk memperlihatkan bahwa \(S \) merentang \(\mathbb{R}^3 \) maka harus diperlihatkan bahwa sebarang vektor \(b = (b_1,b_2,b_3) \) dapat dinyatakan sebagai kombinasi linier.

\[
b = k_1v_1 + k_2v_2 + k_3v_3
\]

dari vektor-vektor pada \(S \). Dengan menyatakan persamaan ini dalam komponen-

komponeninya maka akan memberikan

\[
(b_1,b_2,b_3) = k_1(1,2,3) + k_2(2,9,0) + k_3(3,3,4)
\]

atau

\[
(b_1,b_2,b_3) = (k_1 + 2k_2 + 3k_3, 2k_1 + 9k_2 + 3k_3, k_1 + 4k_3)
\]

atau

\[
k_1 + 2k_2 + 3k_3 = b_1
\]

\[
2k_1 + 9k_2 + 3k_3 = b_2
\]

\[
k_1 + 4k_3 = b_3
\] (2.1)
Jika untuk memperlihatkan bahwa S merentang V, maka harus diperlihatkan bahwa sistem diatas mempunyai pemecahan untuk semua pilihan $b = (b_1, b_2, b_3)$.

Untuk membuktikan bahwa S bebas linier, harus diperlihatkan bahwa satu-satunya pemecahan dari

$$k_1v_1 + k_2v_2 + k_3v_3 = 0$$

(2.2)

adalah

$$k_1 = k_2 = k_3 = 0.$$

Seperti sebelumnya jika (2.2) dinyatakan dalam komponen-komponennya maka pembuktian bebas linier akan direduksi menjadi pembuktian bahwa sistem tersebut homogen.

$$k_1 + 2k_2 + 3k_3 = 0$$

$$2k_1 + 9k_2 + 3k_3 = 0$$

(2.3)

$$k_1 + 4k_3 = 0$$

hanya mempunyai pemecahan trivial. Sistem (2.1) dan (2.3) mempunyai matrik koefisien yang sama. Dapat secara serempak membuktikan bahwa S bebas linier dan merentang \mathbb{R}^3 dengan memperlihatkan bahwa matrik koefisien

$$A = \begin{bmatrix}
1 & 2 & 3 \\
2 & 9 & 3 \\
1 & 0 & 4
\end{bmatrix}.$$

Pada sistem (2.1) dan (2.3) dapat dibalik, karena

$$\text{det}(A) = \begin{vmatrix}
1 & 2 & 3 \\
2 & 9 & 3 \\
1 & 0 & 4
\end{vmatrix} = -1.$$
Maka jelas bahwa A dapat dibalik sehingga S bebas linier dan merentang \(R^3 \). Jadi S adalah sebuah basis untuk \(R^3 \).

Definisi 2.4.2.

Sebuah ruang vektor tak nol \(V \) dinamakan berdimensi berhingga (finite dimensional) jika ruang vektor tersebut mengandung sebuah himpunan berhingga dari vektor-vektor \(\{v_1, v_2, \ldots, v_r\} \) yang membentuk sebuah basis. Jika tidak ada himpunan seperti itu maka \(V \) dinamakan berdimensi tak berhingga (infinite dimensional). Ruang vektor dianggap sebagai ruang vektor berdimensi berhingga walaupun ruang vektor tersebut tidak mempunyai himpunan bebas linier, sehingga basisnya tidak ada.

2.5. Ruang Inner Product

Sebuah hasil kali dalam (inner product) pada ruang vektor riil \(V \) adalah fungsi yang mengasosiasikan bilangan riil \(\langle u, v \rangle \) dengan masing-masing pasangan vektor \(u \) dan \(v \) pada \(V \) sedemikian rupa sehingga aksiomma-aksioma berikut dipenuhi untuk semua vektor \(u,v \) dan \(w \) di \(V \) dan juga untuk semua skalar \(k \):

1. \(\langle u, v \rangle = \langle v, u \rangle \) (aksioma simetri)
2. \(\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle \) (aksioma penambahan)
3. \(\langle ku, v \rangle = k \langle u, v \rangle \) (aksioma kehomogenan)
4. \(\langle v, v \rangle \geq 0 \) dan \(\langle v, v \rangle = 0 \) bila hanya bila \(v = 0 \) (aksioma kepositifan)

Sebuah ruang vektor riil dengan sebuah hasil kali dalam dinamakan ruang hasil kali dalam riil (real product space).
Contoh 2.5.1.
Jika \(u = (u_1, u_2, \ldots, u_n) \) dan \(v = (v_1, v_2, \ldots, v_n) \) adalah vektor-vektor pada \(\mathbb{R}^n \), maka

\[
\langle u, v \rangle = u \cdot v = u_1v_1 + u_2v_2 + \ldots + u_nv_n
\]

mendefinisikan \(\langle u, v \rangle \) terhadap hasil kali dalam Euclidis pada \(\mathbb{R}^n \).

2.6. Norma Dan Jarak Vektor

Dalam ruang hasil kali dalam Euclidis pada \(\mathbb{R}^n \) akan dikembangkan mengenai norma (atau panjang) dan jarak vektor. Di \(\mathbb{R}^2 \) panjang vektor \(u = (u_1, u_2) \) diberikan oleh

\[
\|u\| = \sqrt{u_1^2 + u_2^2}
\]

yang dapat ditulis dalam ruas-ruas hasil kali dalam titik sebagai

\[
\|u\| = \sqrt{u \cdot u} = (u, u)^{\frac{1}{2}}
\]

Dengan cara yang sama, jika \(u = (u_1, u_2, u_3) \) adalah vektor di \(\mathbb{R}^3 \), maka

\[
\|u\| = \sqrt{u_1^2 + u_2^2 + u_3^2} = \sqrt{u \cdot u} = (u, u)^{\frac{1}{2}}
\]

Dimotifasi hasil ini, dapat dibuat definisi berikut.

Definisi 2.6.1.
Jika \(V \) adalah sebuah ruang hasil kali dalam Euclidis pada \(\mathbb{R}^n \) maka norma (atau panjang) vektor \(u \) dinyatakan oleh \(\|u\| \) dan didefinisikan oleh

\[
\|u\| = (u, u)^{\frac{1}{2}}.
\]

Di \(\mathbb{R}^2 \) jarak antara dua titik \(u = (u_1, u_2) \) dan \(v = (v_1, v_2) \) diberikan oleh

\[
d(u, v) = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2} = \|u - v\|
\]
dengan cara serupa, di \(\mathbb{R}^2 \) jarak antara dua titik \(u = (u_1,u_2,u_3) \) dan \(v = (v_1,v_2,v_3) \) diberikan oleh

\[
d(u,v) = \sqrt{(u_1-v_1)^2 + (u_2-v_2)^2 + (u_3-v_3)^2} = \|u-v\|.
\]

Dimotifasi oleh hasil ini, dibuat definisi berikut.

Definisi 2.6.2.

Jika \(V \) adalah sebuah \textit{ruang hasil kali dalam} Euclidis pada \(\mathbb{R}^n \), maka jarak antara dua titik (vektor) \(u \) dan \(v \) dinyatakan oleh \(d(u,v) \) dan didefinisikan oleh

\[
d(u,v) = \|u-v\|.
\]

Contoh 2.6.1.

Jika \(u = (u_1,u_2,...,u_n) \) dan \(v = (v_1,v_2,...,v_n) \) adalah vektor pada \(\mathbb{R}^n \) dengan hasil kali dalam Euclidis, maka

\[
\|u\| = \langle u,u \rangle^{\frac{1}{2}} = \sqrt{u_1^2 + u_2^2 + + u_n^2}
\]

dan

\[
d(u,v) = \|u-v\| = \langle u-v,u-v \rangle^{\frac{1}{2}}
\]

\[
= \sqrt{(u_1-v_1)^2 + (u_2-v_2)^2 + + (u_n-v_n)^2}.
\]

Teorema 2.6.1.

(Ketaksamaan Cauchy-Schwarz). Jika \(u \) dan \(v \) adalah vektor pada sebuah \textit{ruang hasil kali dalam}, maka \(\langle u,v \rangle^2 \leq \langle u,u \rangle \langle v,v \rangle \).
Bukti.

Misal u dan v vektor di V dan skalar k, dengan aksioma kepositifan, kehomogenan dan simetri pada ruang inner product, didapat

$$0 \leq \langle u + kv, u + kv \rangle = \langle u, u \rangle + \langle u, kv \rangle + \langle kv, u \rangle + \langle kv, kv \rangle$$

$$= \langle u, u \rangle + k\langle u, v \rangle + k\langle v, u \rangle + kk\langle v, v \rangle$$

$$= \langle u, u \rangle + k\langle u, v \rangle + k\langle v, u \rangle + k^2\langle v, v \rangle$$

$$= \langle u, v \rangle + 2k\langle u, v \rangle + k^2\langle v, v \rangle.$$

Jika $v = 0$ maka $\langle u, v \rangle = \langle v, v \rangle = 0$, sehingga kesamaan sebelumnya terpenuhi.

Kemudian anggap $v \neq 0$ dan ambil $k = -\frac{\langle u, v \rangle}{\langle v, v \rangle}$ sehingga

$$\frac{\langle u, u \rangle - 2\frac{\langle u, v \rangle^2}{\langle v, v \rangle} + \frac{\langle u, v \rangle^2}{\langle v, v \rangle}}{\langle v, v \rangle} = \frac{\langle u, u \rangle - \frac{\langle u, v \rangle^2}{\langle v, v \rangle}}{\langle v, v \rangle} \geq 0$$

yang mana ekivalen dengan

$$\langle u, v \rangle^2 \leq \langle u, u \rangle \langle v, v \rangle.$$

2.7. Basis Ortonormal

Definisi 2.7.1.

Dalam ruang hasil kali dalam dua vektor u dan v dinamakan ortogonal jika $\langle u, v \rangle = 0$. Selanjutnya jika u ortogonal setiap vektor pada himpunan W, maka dikatakan bahwa u ortogonal terhadap W.

Contoh 2.7.1.

Misalkan P_2 mempunyai hasil kali dalam

$$\langle p, q \rangle = \int_{-1}^{1} p(x)q(x)dx.$$
dan misal \(p = x, q = x^2 \) maka

\[
\langle u, v \rangle = \int_{-1}^{1} x(x^2) \, dx
\]

\[
= \int_{-1}^{1} x^3 \, dx
\]

\[
= \frac{1}{4} x^4 \bigg|_{-1}^{1}
\]

\[
= 0.
\]

Karena \(\langle p, q \rangle = 0 \) maka vektor-vektor \(p = x \) dan \(q = x^2 \) adalah ortogonal terhadap hasil kali dalam yang diberikan.

Teorema 2.7.1.

(*Teorema Pythagoras yang digeneralisasi*). Jika \(u \) dan \(v \) adalah vektor-vektor ortogonal pada ruang hasil kali dalam maka \(\| u + v \|^2 = \| u \|^2 + \| v \|^2 \).

Bukti.

\[
\| u + v \|^2 = \langle u + v, u + v \rangle
\]

\[
= \langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle
\]

\[
= \langle u, u \rangle + 2\langle u, v \rangle + \langle v, v \rangle
\]

\[
= \| u \|^2 + \| v \|^2.
\]

Definisi 2.7.2.

Sebuah himpunan vektor pada ruang hasil kali dalam dinamakan himpunan ortogonal jika semua pasangan vektor-vektor yang berbeda dalam himpunan
tersebut ortogonal. Sebuah himpunan ortogonal yang setiap vektornya mempunyai norma 1 dinamakan ortonormal.

Contoh 2.7.2.

Misal $v_1 = (0,1,0)$, $v_2 = (-\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}})$, $v_3 = (\frac{1}{\sqrt{2}},0,-\frac{1}{\sqrt{2}})$. Himpunan $S = \{v_1,v_2,v_3\}$ ortonormal jika \mathbb{R}^3 mempunyai hasil kali dalam Euclidis, karena

$$\langle v_1,v_2 \rangle = \langle v_1,v_3 \rangle = \langle v_2,v_3 \rangle = 0$$

dan $\|v_1\| = \|v_2\| = \|v_3\| = 1$

Jika v adalah vektor tak nol pada ruang hasil kali dalam maka $\frac{1}{\|v\|}v$ mempunyai norma 1, karena $\left\| \frac{1}{\|v\|}v \right\| = \frac{1}{\|v\|} \|v\| = 1$.

Proses pengalian vektor tak nol ini dengan kebalikan panjangnya untuk mendapatkan vektor yang normanya 1 dinamakan menormalisasikan v. Himpunan ortogonal dari vektor tak nol selalu dapat dikonversikan terhadap himpunan ortonormal dengan menormalisasikan vektornya masing-masing.

Contoh 2.7.3.

Himpunan vektor $S = \{u_1,u_2,u_3\}$ dimana $u_1 = (0,1,0)$, $v_2 = (1,0,1)$, $v_3 = (1,0,-1)$ adalah ortogonal karena $\langle u_1,u_2 \rangle = \langle u_1,u_3 \rangle = \langle u_2,u_3 \rangle = 0$. Karena $\|u_1\| = 1$, $\|u_2\| = \frac{1}{\sqrt{2}}$

dan $\|u_3\| = \frac{1}{\sqrt{2}}$, dengan menormalisasikan masing-masing vektornya akan menghasilkan himpunan ortonormal pada contoh 2.7.2.

Teorema 2.7.2.

Jika $S = \{v_1,v_2,\ldots,v_n\}$ adalah basis ortonormal untuk ruang hasil kali dalam V

dan u adalah sebarang vektor dalam V maka
\[u = \langle u, v_1 \rangle v_1 + \langle u, v_2 \rangle v_2 + \ldots + \langle u, v_n \rangle v_n. \]

Bukti.

Karena \(S = \{v_1, v_2, \ldots, v_n\} \) adalah basis maka vektor \(u \) dapat dinyatakan dalam bentuk

\[u = k_1v_1 + k_2v_2 + \ldots + k_nv_n \]

akan dilengkapi bukti tersebut dengan memperlihatkan bahwa \(k_i = \langle u, v_i \rangle \) untuk \(i = 1, 2, \ldots, n \). Untuk setiap vektor \(v_i \) dalam \(S \) diperleh

\[\langle u, v_i \rangle = \langle k_1v_1 + k_2v_2 + \ldots + k_nv_n, v_i \rangle \]

\[= k_1\langle v_1, v_i \rangle + k_2\langle v_2, v_i \rangle + \ldots + k_n\langle v_n, v_i \rangle. \]

Karena \(S = \{v_1, v_2, \ldots, v_n\} \) adalah himpunan ortonormal maka diperoleh\(\langle v_i, v_j \rangle = \|
\]

\[\|v_i\|^2 = 1 \text{ dan } \langle v_i, v_j \rangle = 0 \text{ jika } i \neq j \]

maka persamaan diatas dapat disederhanakan menjadi \(\langle u, v_i \rangle = k_i \).

Contoh 2.7.4.

Misalkan \(v_1 = (0,1,0), v_2 = (-\frac{4}{3},0,\frac{3}{2}), v_3 = (\frac{3}{2},0,\frac{4}{3}) \) mudah untuk memeriksa bahwa \(S = \{v_1, v_2, v_3\} \) adalah basis ortonormal untuk \(\mathbb{R}^3 \) dengan hasil kali dalam Euclidian. Untuk vektor \(u = (1,1,1) \) dapat dinyatakan sebagai kombinasi linier vektor-vektor \(S \). Dari hasil kali dalam

\[\langle u, v_1 \rangle = 1, \langle u, v_1 \rangle = -\frac{1}{2}, \langle u, v_1 \rangle = \frac{2}{3} \]

sehingga menurut teorema 2.7.2

\[u = v_1 - \frac{1}{2}v_2 + \frac{2}{3}v_3 \]

yaitu:

\[(1,1,1) = (0,0,0) - \frac{1}{2}(\frac{3}{2},0,\frac{4}{3}) + \frac{2}{3}(\frac{3}{2},0,\frac{4}{3}) \]
2.8. Sifat Fungsi Terukur

Misal M subhimpunan X dan f adalah fungsi riil yang didefinisikan pada X, f terukur jika terdapat bilangan riil λ sedemikian sehingga

$$\{x \in X : f(x) > \lambda\} = \{f > \lambda\} \in M$$

Teorema 2.8.1.

Andaikan M subhimpunan X dan misal f fungsi riil yang didefinisikan pada X. Maka pernyataan berikut adalah ekivalen:

(i) f adalah terukur

(ii) untuk bilangan riil λ, $\{f \geq \lambda\} \in M$

(iii) untuk bilangan riil λ, $\{f < \lambda\} \in M$

(iv) untuk bilangan riil λ, $\{f \leq \lambda\} \in M$.

Bukti.

(i) \rightarrow (ii). Ambil λ dan $n \geq 1$ misal $A_n = \{f > \lambda - \frac{1}{n}\}$ dengan $A_n \in M$ untuk semua n, sehingga $\{f \geq \lambda\}$ adalah interseksi dari A_n dan juga anggota M jadi (ii)
terpenuhi.

(ii) \rightarrow (iii). $\{f < \lambda\} = X \setminus \{f \geq \lambda\}$

(iii) \rightarrow (iv). $\{f \leq \lambda\} = \bigcap_{n=1}^{\infty} \{f < \lambda + \frac{1}{n}\}$

(iv) \rightarrow (i). $\{f > \lambda\} = X \setminus \{f \leq \lambda\}$.

Dari teorema diatas didapatkan:

$$\{f = \infty\} = \bigcap_{n=1}^{\infty} \{f > n\}, \{f = -\infty\} = \bigcap_{n=1}^{\infty} \{f < -n\}$$

$$\{f < \infty\} = \bigcup_{n=1}^{\infty} \{f < n\}, \{f > -\infty\} = \bigcup_{n=1}^{\infty} \{f > -n\}$$
\{-\infty < f < \infty\} = \{f > -\infty\} \cap \{f < \infty\}.

Untuk bilangan riil \(\lambda, \mu \) didapatkan

\begin{align*}
\{\lambda < f < \mu\} &= \{f > \lambda\} \cap \{f < \mu\} \\
\{\lambda < f \leq \mu\} &= \{f > \lambda\} \cap \{f \leq \mu\} \\
\{\lambda < f < \mu\} &= \{f > \lambda\} \cap \{f < \mu\} \\
\{\lambda < f \leq \mu\} &= \{f > \lambda\} \cap \{f \leq \mu\}
\end{align*}

\begin{align*}
\{\lambda \leq f < \mu\} &= \{f \geq \lambda\} \cap \{f < \mu\} \\
\{\lambda \leq f \leq \mu\} &= \{f \geq \lambda\} \cap \{f \leq \mu\}
\end{align*}

\begin{align*}
\{f = \lambda\} &= \{f \leq \lambda\} \cap \{f \geq \lambda\} \\
\{f \neq \lambda\} &= X \setminus \{f = \lambda\}.
\end{align*}

2.9. Fungsi Dalam \(L^2(\mathbb{R}) \)

Diberikan \(f \) fungsi terukur yang didefinisikan pada himpunan terukur \(E \subseteq \mathbb{R} \). Fungsi \(f \) dikatakan terintegral kuadrat jika \(f^2 \) terintegral Lebesque pada \(E \). Himpunan semua fungsi terukur yang terintegral kuadrat pada \(E \) dinotasikan dengan

\[L^2(E) = \left\{ f : \int_E |f|^2 \, du < \infty \right\} \]

dengan \(u \) ukuran Lebesque.
Jika $L^2(\mathbb{E})$ dilengkapi dengan inner product $\langle \cdot, \cdot \rangle$ dengan aturan untuk setiap $f, g \in L^2(\mathbb{E})$ didefinisikan

$$\langle f, g \rangle = \int_{\mathbb{E}} f \, g \, du$$

maka $L^2(\mathbb{E})$ merupakan ruang pre Hilbert. Lebih lanjut terhadap norma $\| \|$ dengan aturan jika $f \in L^2(\mathbb{E})$ didefinisikan

$$\|f\| = \left(\int_{\mathbb{E}} |f|^2 \, du \right)^{1/2}$$

maka $L^2(\mathbb{E})$ merupakan ruang Hilbert. Jika diambil $\mathbb{E} = \mathbb{R}$ maka diperoleh ruang Hilbert $L^2(\mathbb{R})$.

Definisi 2.9.1.

Himpunan fungsi $\{f_1, f_2, \ldots, f_n\}$ dikatakan merentang ruang vektor V jika fungsi dalam V dapat ditulis sebagai kombinasi linier dari f_1, f_2, \ldots, f_n.

Jika diambil subruang dari ruang fungsi $L^2(\mathbb{R})$, dan merentang di $L^2(\mathbb{R})$.

Fungsi-fungsi $\{f_1, f_2, \ldots, f_n\}$ adalah subruang dari $L^2(\mathbb{R})$ didefinisikan

$$\{f \in L^2(\mathbb{R}) : f(x) = \sum_{i=1}^{n} a_i f_i(x)\}$$

dimana

$\{f_i(x)\}$ adalah basis $L^2(\mathbb{R})$

$\{a_i\}$ adalah konstanta.
2.10. Himpunan Ortonormal

Dari definisi 2.7.1 untuk elemen x_i, x_j dalam ruang inner product X dikatakan ortogonal dan ditulis $x_i \perp x_j$ jika $\langle x_i, x_j \rangle = 0$. Jika $x \in X$ ortogonal untuk setiap elemen dari subhimpunan A dari X maka x dikatakan ortogonal ke A dan ditulis $x \perp A$. Kemudian untuk x_i yang mempunyai norma 1 dan untuk $x_i \perp x_j$ dimana $i \neq j$ dikatakan membentuk sistem ortonormal (ONS).

Selanjutnya diberikan ruang Hilbert X dan subhimpunan Y, untuk $Y = \{x_1, x_2, \ldots, x_n\}$ himpunan ortonormal. Ambil $x \in X$ sehingga x dapat direpresentasikan oleh $\{x_1, x_2, \ldots, x_n\}$ dan dinyatakan dengan

$$\bigg\| x - \sum_{i=1}^{n} \lambda_i x_i \bigg\| ; \lambda_i \text{ skalar.}$$

Karena Y adalah basis maka Y bebas linier dan didapat

$$\lambda_1 x_1 + \lambda_2 x_2 + \ldots + \lambda_n x_n = 0$$

mempunyai paling sedikit satu pemecahan yaitu

$$\lambda_1 = \lambda_2 = \ldots = \lambda_n = 0.$$

Misal x_i salah satu basis, maka

$$\langle \lambda_1 x_1 + \lambda_2 x_2 + \ldots + \lambda_n x_n, x_i \rangle = 0$$

$$\lambda_i \langle x_1, x_i \rangle + \lambda_2 \langle x_2, x_i \rangle + \ldots + \lambda_n \langle x_n, x_i \rangle + \ldots + \lambda_n \langle x_n, x_i \rangle = 0$$

$$\lambda_i \|x_i\| = 0.$$

Karena $Y = \{x_1, x_2, \ldots, x_n\}$ himpunan ortonormal maka

$$\langle x_i, x_j \rangle = \|x_i\| = 1$$

sehingga $\lambda_i \|x_i\| = 0$ bila $\lambda_i = 0$.
Ambil sebarang \(x_i \in \{X_i\} \) basis ortonormal didapat

\[
\langle x - \sum_{i=1}^{n} \lambda_i x_i, x_k \rangle = 0, \quad 1 \leq k \leq n
\]

\[
\langle x, x_k \rangle - \sum_{i=1}^{n} \lambda_i \langle x_i, x_k \rangle = 0
\]

\[
\langle x, x_k \rangle = \sum_{i=1}^{n} \lambda_i \langle x_i, x_k \rangle
\]

\[
= \lambda_1 \langle x_1, x_k \rangle + \lambda_2 \langle x_2, x_k \rangle + \cdots + \lambda_k \langle x_k, x_k \rangle + \cdots + \lambda_n \langle x_n, x_k \rangle
\]

\[
= \lambda_k \langle x_k, x_k \rangle
\]

\[
= \lambda_k \| x_k \|
\]

\[
= \lambda_k.
\]

Nilai dari \(\lambda_k = \langle x, x_k \rangle \) disebut koefisien Fourier dari \(x \) dengan \(\{x_k\} \) ONS.

2.11. Variabel Random (Penubah Acak)

Hasil dari suatu percobaan yang dilakukan secara lengkap oleh suatu ruang sampel \(\Omega \) dengan fungsi probabilitas \(P(\cdot) \) pada peristiwanya dan dengan mengamati suatu \(w \in \Omega \) yang dipilih berdasarkan \(P(\cdot) \). Hal ini dapat menganalisis percobaan tersebut, akan tetapi dalam hal ini kita mengamati fungsi dari \(w \) yang disebut variabel random.

Definisi 2.11.1.

1. \(X \) disebut variabel random diskrit bila \(X \) variabel random yang hanya mendapat nilai berhingga atau banyaknya terbilang.
2. X disebut variabel random kontinu bila X variabel random yang mendapat nilai tak berhingga atau banyaknya tak terbilang.

Contoh 2.1.1.

1. Eksperimen melempar 3 mata uang sekali

\[\Omega = \{(MMM),(MMB),(MBM),(MBM),(MBB),(BBB),(BBB), (BBB)\} \]

untuk setiap \(w \in \Omega \).

- \(X = \) banyaknya sisi M dalam \(w \)
- \(X (MMM) = 3 \)
- \(X (MMB) = X (MBM) = X (BMM) = 2 \)
- \(X (MBB) = X (BBB) = X (BBM) = 1 \)
- \(X (BBB) = 0 \).

Hasil percobaan menghasilkan variabel randomnya diskrit karena ruang hasilnya berhingga yaitu \(R_X = \{0,1,2,3\} \).

2. Misal X variabel random yang menyatakan jarak tempuh perjalanan seseorang dalam 4 hari yang tidak melebihi 100 km. Maka X merupakan interval dari \(X = 0 \) sampai \(X = 100 \) dengan \(A = \{0 \leq X \leq 100\} \).