Analisa algoritma mengesort menggunakan teknik divide and conquer

Rahardjo , Arief Teguh (2000) Analisa algoritma mengesort menggunakan teknik divide and conquer. Undergraduate thesis, FMIPA UNDIP.

[img]
Preview
PDF
2471Kb
[img]
Preview
PDF
209Kb
[img]
Preview
PDF
243Kb
[img]
Preview
PDF
325Kb
[img]
Preview
PDF
285Kb
[img]
Preview
PDF
905Kb
[img]
Preview
PDF
492Kb
[img]PDF
Restricted to Repository staff only

279Kb
[img]
Preview
PDF
211Kb
[img]
Preview
PDF
214Kb
[img]
Preview
PDF
1769Kb

Abstract

Teknik Divide and Conquer (DANDC) merupakan salah satu teknik untuk mendesain suatu algoritma, yang pada prinsipnya membagi n input rnenjadi k subset input (1 < k S n) dengan ukuran yang sama. Setiap k subset input akan. terdapat k sub problem sedemikian sehingga setiap sub problem mempunyai solusi. Selaujutnya dari k sub solusi dikornbinasi sehingga diperoleh solusi optimal. Algoritma mergesort menggunakan teknik Divide and Conquer terdiri dari dua prosedur yaitu prosedur MERGE dan MERGESORT. Misalkan terdapat suatu barisan dengan n elemen yang ditempatkan dalam suatu array A. Barisan tersebut akan diurutkan secara ascending. Dengan menggunakan algoritma mergesort dengan teknik DANDC barisan tersebut dibagi menjadi dua bagian sehingga dihasilkan A(1), A(2), ..., A(n/2) dan A(n12+1), A(n12+2), A(n). Jika pembagian barisan tersebut ukuran setiap bagiannya. masih besar (ukuran > 1), maka setiap bagian dibagi lagi menjadi dua bagian yang lebih kecil sedemikian sehingga setiap bagiannya n-rempunyai satin elemen. Selanjutnya setiap pasang bagian dikombinasi sehingga dihasilkan =tan yang tunggal dari n elemen semula. Divide and conquer technique (DANDC) is a technique to design an algorithm, which principally divides n inputs into k subset inputs (1 < k n) in the same size. Every k subset of input containts k sub problems and each of sub problem has solution. Then k sub solutions are combined to get the optimum solution. The mergesort algorithm using divide and conquer technique consist of two procedures, MERGE and MERGESORT procedures. Let, there is a list with n element placed into an array A. The list will be ascendingly sorted. Using mergesort algorithm, the list is divided into two parts so there will be A(1), A(2), ..., A(n/2) and A(n/2+1), A(n12+2), A(n). If the size of each part of the list division remains large (size > I), then each part is divided again into two smaller parts so that there will be one element for each part. Next, every pair of parts is combined to get a single sort of the previous This document is Undip Institutional Repository Collection. The aNiPor(s) or copyright owner(s) agree that UNDIP-IR may, with4t changing the content, translate the submission to any medium or format for the purpose of preservation. The author(s) or copyright. owners} also agree that UNDIP-IR, may keep more than one copy of this submission for purpose of security, back-up and preservation: . http://eprints.undip.acid ) 1_ , . .

Item Type:Thesis (Undergraduate)
Subjects:Q Science > QA Mathematics
Divisions:Faculty of Science and Mathematics > Department of Mathematics
ID Code:31809
Deposited By:Mr UPT Perpus 1
Deposited On:25 Nov 2011 09:18
Last Modified:25 Nov 2011 09:18

Repository Staff Only: item control page