Lembar 1

HALAMAN PENGESAHAN

Judul Skripsi : MODEL RUNTUN WAKTU MULTIVARIAT
Nama : NURYANI
NIM : J 101 93 0877
Jurusn : MATEMATIKA

Telah lulus ujian sarjana pada tanggal 30 Mei 1998.

Semarang, Mei 1998
Panitia Penguji Ujian Sarjana
Jurusan Matematika

Ketua

Drs. Mustafid, M. Eng, Ph.D
NIP. 130 877 409
HALAMAN PENGESAHAN

Judul Skripsi : MODEL RUNTUN WAKTU MULTIVARIAT
Nama : NURYANI
NIM : J 101 93 0877
Jurusan : MATEMATIKA

Telah selesai dan layak untuk mengikuti ujian sarjana.

Semarang, Mei 1998

Pembimbing Utama
Drs. Mustafid, M. Eng, Ph.D
NIP. 130 877 409

Pembimbing Anggota
Drs. Y.D. Sumanto
NIP. 132 048 856
KATA PENGANTAR

Segala puji dan syukur penulis panjatkan kehadirat Allah SWT yang telah melimpahkan rahmat dan karunia-Nya, sehingga penulis dapat menyelesaikan Tugas Akhir ini.

Tugas Akhir ini disusun sebagai salah satu syarat bagi penulis untuk meraih gelar sarjana strata satu pada Jurusan Matematika Fakultas Matematika dan Ilmu pengetahuan Alam.

Tak lupa pada kesempatan ini penulis ingin menyampaikan rasa terimakasih kepada

1. Bapak Drs. Mustafid, M. Eng, Ph.D, selaku pembimbing I yang telah memberikan bimbingan dan pengarahan kepada penulis dari awal sampai akhir penyusunan Tugas Akhir ini

2. Bapak Drs. Y.D. Sumanto, selaku pembimbing II yang juga telah memberikan bimbingan dan pengarahan kepada penulis dari awal sampai akhir penyusunan Tugas Akhir ini

3. Bapak Drs. Harjito, selaku Ketua Jurusan Matematika Fakultas MIPA Universitas Diponegoro

5. Bapak dan Ibu Dosen di Jurusan Matematika Fakultas MIPA Universitas Diponegoro yang telah berkenan
memberikan ilmu pengetahuannya kepada penulis selama masa kuliah

6. Bapak, Ibu, dan Kakakku tercinta yang telah memberikan dorongan baik moril maupun spirituual dalam penyusunan Tugas Akhir ini

7. Eko, Endang, dan Yuli yang telah membantu dan memberi dorongan moril dalam penyusunan tugas akhir ini, serta seluruh rekan Matematika ’93

8. Semua pihak yang telah membantu dalam penyelesaian Tugas Akhir ini

Akhirnya penulis mempunyai harapan, semoga Tugas Akhir ini bermanfaat bagi semua pihak. Di samping itu, penulis menyadari bahwa Tugas Akhir ini masih jauh dari sempurna, untuk itu dengan segala kerendahan hati penulis sangat mengharapkan kritik dan saran demi lebih sempurnanya penulisan Tugas Akhir ini.

Semarang, Mei 1998

Penulis
<table>
<thead>
<tr>
<th>Bab</th>
<th>Judul</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DAFTAR ISI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HALAMAN JUDUL</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>HALAMAN PENGESAHAN</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>KATA PENGANTAR</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>DAFTAR ISI</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>ABSTRAKS</td>
<td>viii</td>
</tr>
<tr>
<td></td>
<td>DAFTAR SIMBOL</td>
<td>ix</td>
</tr>
<tr>
<td></td>
<td>BAB I PENDAHULUAN</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>BAB II MATERI PENUNJANG</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2.1 Model Regresi Ganda</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2.2 Model Runtun Waktu Stasioser Univariat</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2.2.1 Stasioneritas Dan White Noise</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2.2.2 Model Moving Average Univariat</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2.2.3 Model Autoregressive Univariat</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2.2.4 Model Autoregressive Moving Average Univariat</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>BAB III MODEL RUNTUN WAKTU MULTIVARIAT</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>3.1 Matriks Kovariansi Dan Korelasi</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>3.2 Model Moving average (MA) Multivariat</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>3.2.1 Invertibilitas Dari Model Moving Average (MA) Multivariat</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>3.2.2 Matriks Kovariansi Dari Model Moving average (MA) Multivariat</td>
<td>23</td>
</tr>
</tbody>
</table>
3.2.3 Ciri-ciri Model MA(1) Multivariat 24
3.3 Model Autoregressive (AR) Multivariat 28
 3.3.1 Stasioneritas Dan Kausalitas Dari Model Autoregressive (AR) Multivariat 29
 3.3.2 Relasi Yule-Walker Untuk Matriks Kovariansi Dari Model Autoregressive (AR) Multivariat 32
3.4 Model Autoregressive Moving Average (ARMA) Multivariat 34
 3.4.1 Kausalitas Dan Invertibilitas Dari Model Autoregressive Moving Average (ARMA) Multivariat 35
 3.4.2 Matriks Kovariansi Dari Model Autoregressive moving Average (ARMA) Multivariat 42

BAB IV KESIMPULAN 50
DAFTAR PUSTAKA 51
DAFTAR SIMBOL

B = operator backshift

\(\beta_i \) = parameter regresi

\(\hat{\beta}_i \) = estimasi parameter regresi

\(\epsilon_t \) = residu (kesalahan pada waktu \(t \))

\(\sigma^2_\epsilon \) = variansi dari \(\epsilon \)

NID = distribusi normal independen

E(X) = ekspektasi dari X

Var(X) = variansi dari X

Cov(X_t, X_j) = covariansi dari \(X_t \) dan \(X_j \)

lag \(h \) = \(h \) waktu penundaan

\(\gamma_x(h) \) = autokovariansi dari \(X_t \) univariat pada lag \(h \)

\(\rho_x(h) \) = autokorelasi dari \(X_t \) univariat pada lag \(h \)

\(a_t \) = white noise

\(\sigma^2_a \) = variansi dari \(a_t \)

WN(0, \sigma^2_a) = white noise dengan mean 0 dan variansi \(\sigma^2_a \)

\(\theta_j \) = parameter MA pada tingkat ke-\(j \)

\(\phi_j \) = parameter AR pada tingkat ke-\(j \)

\(\mu_t \) = mean dari \(X_t \)

\(\gamma_{ij}(\ell) \) = kovariansi silang antara \(X_{it} \) dengan \(X_{jt} \) pada lag \(\ell \)

\(\Gamma(\ell) \) = matriks variansi-kovariansi pada lag \(\ell \)

\(\Sigma \) = matriks kovariansi dari vektor \(a_t \)

WN(0, \Sigma) = white noise dengan vektor mean 0 dan matriks kovariansi \(\Sigma \)

\(V^{1/2} \) = matriks diagonal dengan elemen diagonalnya
adalah seper akar variansi dari proses ke-1

\(\rho_{ij}(\ell) \) = korelasi antara \(X_{it} \) dengan \(X_{jt} \) pada lag \(\ell \)

\(\rho(\ell) \) = matriks korelasi pada lag \(\ell \)

\(\Theta_j \) = matriks parameter dari MA multivariat

\(\Phi_j \) = matriks parameter dari AR multivariat

\(\lambda \) = eigen value dari matriks \(\Theta(B) \) dan \(\Phi(B) \)

\(Z \) = himpunan bilangan bulat

\(C \) = himpunan bilangan kompleks

\(I \) = matriks identitas

\(\|\Pi\|^2 \) = tr\{\Pi'\Pi\}