Sugiyanti , Sri (2000) Estimasi komponen varian data model campuran klasifikasi dua arah dengan metode anova. Undergraduate thesis, FMIPA UNDIP.
PDF Restricted to Repository staff only 2100Kb | ||
| PDF 18Kb | |
| PDF 248Kb | |
| PDF 352Kb | |
| PDF 293Kb | |
| PDF 656Kb | |
PDF Restricted to Repository staff only 1012Kb | ||
| PDF 218Kb | |
| PDF 213Kb | |
| PDF 224Kb |
Abstract
Model campuran lclasifikasi crossed dua arah terdiri dari dua faktor yaitu faktor A dan faktor B. Dimana pengaruh taraf ke-i dari faktor A (a.i ) merupakan pengaruh tetap dan pengaruh taraf ke-j dari faktor B (pi) merupakan pengaruh random. Model tersebut mempunyai dua variabilitas yaitu variabilitas perlakuan di variabilitas gal. (0- 2). Vail:2.H itM peristiMPTi 'iputi variabilitas perlakuan B (0_) dan variabilitas interalcsi perlakuan A dan B (r). 2). Variabilitas variabilitas tersebut disebut dengan komponen varian. Nilai komponen varian harm diestimasi. Metode yang digunakan adalah metode ANOVA. Prinsip metode ANOVA adalah menyamakan harga harapan rata-rata kuadrat dengan rata-rata kuadrat dan i analisis varian, sehingga diperoleh estimator dari komponen ft A A varian yang dinotasikan dengan c,. 2fl , Estimator yang telah didapat dievaluasi tentang ketidalcbiasan. Jika nilai estimator komponen varian positif dan harga harapan rata-rata kuadrat masuk dalam interval konfidensi harga harapan rata-rata kuadrat, maka model campuran klasifikasi crossed dua arah dengan rancangan dasan rancangan acak lengkap cocok. The mixed 2-way crossed classification model consists of two faktors. They are factor A and factor B, where the effects of level from faktor A (cc, ) called fixed effects and the effects of di level from faktor B ((3j ) called random effects. This model has two variabilities, they are treatment variability and error variability ( 2.). The treatment variability includes treatment variability of B ') and the variability of interaction between A and B (' . Those two variabilities ( treatment and error variability) called variance komponents. The value of variance kowonent has to be estimated. There are methods which can be used to estimate that value, one of them is ANOVA method. This method using the prosedure of equating sums of squares to the expected values, so we can A A A get estimator of variance komponents, have notation,cr 2 and a 2 . And p , then, those estimator has to be evaluated about its unbiasedness. If the value of variance komponent positive and the expected values of sums of squares are in its confidence intervals hence the mixed 2-way crossed classification model is suitable.
Item Type: | Thesis (Undergraduate) |
---|---|
Subjects: | Q Science > QA Mathematics |
Divisions: | Faculty of Science and Mathematics > Department of Mathematics |
ID Code: | 31747 |
Deposited By: | Mr UPT Perpus 1 |
Deposited On: | 24 Nov 2011 13:53 |
Last Modified: | 24 Nov 2011 13:53 |
Repository Staff Only: item control page