Estimasi komponen varian data model campuran klasifikasi dua arah dengan metode anova

Sugiyanti , Sri (2000) Estimasi komponen varian data model campuran klasifikasi dua arah dengan metode anova. Undergraduate thesis, FMIPA UNDIP.

[img]PDF
Restricted to Repository staff only

2100Kb
[img]
Preview
PDF
18Kb
[img]
Preview
PDF
248Kb
[img]
Preview
PDF
352Kb
[img]
Preview
PDF
293Kb
[img]
Preview
PDF
656Kb
[img]PDF
Restricted to Repository staff only

1012Kb
[img]
Preview
PDF
218Kb
[img]
Preview
PDF
213Kb
[img]
Preview
PDF
224Kb

Abstract

Model campuran lclasifikasi crossed dua arah terdiri dari dua faktor yaitu faktor A dan faktor B. Dimana pengaruh taraf ke-i dari faktor A (a.i ) merupakan pengaruh tetap dan pengaruh taraf ke-j dari faktor B (pi) merupakan pengaruh random. Model tersebut mempunyai dua variabilitas yaitu variabilitas perlakuan di variabilitas gal. (0- 2). Vail:2.H itM peristiMPTi 'iputi variabilitas perlakuan B (0_) dan variabilitas interalcsi perlakuan A dan B (r). 2). Variabilitas variabilitas tersebut disebut dengan komponen varian. Nilai komponen varian harm diestimasi. Metode yang digunakan adalah metode ANOVA. Prinsip metode ANOVA adalah menyamakan harga harapan rata-rata kuadrat dengan rata-rata kuadrat dan i analisis varian, sehingga diperoleh estimator dari komponen ft A A varian yang dinotasikan dengan c,. 2fl , Estimator yang telah didapat dievaluasi tentang ketidalcbiasan. Jika nilai estimator komponen varian positif dan harga harapan rata-rata kuadrat masuk dalam interval konfidensi harga harapan rata-rata kuadrat, maka model campuran klasifikasi crossed dua arah dengan rancangan dasan rancangan acak lengkap cocok. The mixed 2-way crossed classification model consists of two faktors. They are factor A and factor B, where the effects of level from faktor A (cc, ) called fixed effects and the effects of di level from faktor B ((3j ) called random effects. This model has two variabilities, they are treatment variability and error variability ( 2.). The treatment variability includes treatment variability of B ') and the variability of interaction between A and B (' . Those two variabilities ( treatment and error variability) called variance komponents. The value of variance kowonent has to be estimated. There are methods which can be used to estimate that value, one of them is ANOVA method. This method using the prosedure of equating sums of squares to the expected values, so we can A A A get estimator of variance komponents, have notation,cr 2 and a 2 . And p , then, those estimator has to be evaluated about its unbiasedness. If the value of variance komponent positive and the expected values of sums of squares are in its confidence intervals hence the mixed 2-way crossed classification model is suitable.

Item Type:Thesis (Undergraduate)
Subjects:Q Science > QA Mathematics
Divisions:Faculty of Science and Mathematics > Department of Mathematics
ID Code:31747
Deposited By:Mr UPT Perpus 1
Deposited On:24 Nov 2011 13:53
Last Modified:24 Nov 2011 13:53

Repository Staff Only: item control page