BAB II

TEORI PENUNJANG

2.1. Definisi-definisi

2.1.1. Sampel Kontinyu

Definisi: Suatu ruang sampel S yang mempunyai anggota semua titik dalam suatu interval atau dalam suatu penggabungan interval-interval pada suatu garis nyata dinamakan sampel kontinyu

Contoh : $S = \{ x: 0 \le x \le 10 \}$

 $S = \{ x: 0 \le x \le 1 \text{ atau } 2 \le x \le 3 \}$

dinamakan sampel kontinyu. Ruang sampel kontinyu mempunyai jumlah anggota tak hingga.

2.1.2. Kontinuitas

Definisi : Suatu fungsi f(x) dikatakan kontinyu di $x = x_0$ jika :

- i. $f(x_0)$ terdefinisi
- ii. $\lim_{x\to x_0} f(x)$ ada
- iii. $\lim_{x\to x_0} f(x) = f(x_0).$

Contoh : Ambil $f(x) = \frac{3}{4}(1-x^2)$ kontinyu di $x = \frac{1}{2}$. Selanjutnya akan diperlihatkan f(x) memenuhi ketiga syarat tersebut.

i.
$$f(1/2) = \frac{3}{4}(1-(1/2)^2) = \frac{3}{4} \times \frac{3}{4} = \frac{9}{16}$$
 (terdefinisi)

ii.
$$\lim_{x \to \frac{1}{2}} \frac{3}{4} (1 - x^2) = \frac{9}{16}$$
 (ada)

iii. Dari pers.(i) dan pers.(ii) terlihat dengan jelas bahwa

$$\lim_{x\to\frac{1}{2}}\frac{3}{4}(1-x^2)=\frac{9}{16}=f(1/2).$$

maka jelaslah bahwa fungsi $f(x) = \frac{3}{4}(1-x^2)$ kontinyu di

$$x=\frac{1}{2}.$$

2.1.3. Peubah Acak

Peubah acak adalah suatu peubah yang nilainya dari bilangan yang ditentukan melalui suatu hasil percobaan.

2. 1. 4. Fungsi Densitas

Fungsi distribusi dari peubah acak kontinyu X adalah fungsi $F(x) = P\{X \le x\}$ didefinisikan untuk setiap x dari - ∞ sampai ∞ .

Definisi : Turunan dari F(x) yaitu $f(x) = \frac{dF(x)}{dx}$ disebut fungsi densitas dari peubah acak kontinyu X.

2.1.5. Fungsi Densitas Gabungan

Bila X dan Y dua peubah acak kontinyu, distribusi peluang terjadinya serentak X dan Y dinyatakan fungsi f(x,y) untuk setiap pasangan nilai (x,y) dalam rentang peubah acak kontinyu X dan Y.

(http://eprints.undip.ac.id)

Definisi : Fungsi f(x,y) disebut fungsi densitas gabungan peubah acak kontinyu X dan Y bila

- 1. $f(x,y) \ge 0$ untuk semua (x,y)
- $2. \quad \int_{0}^{\infty} \int_{0}^{\infty} f(x, y) \, dx dy = 1$
- 3. $P[(X,Y) \in A] = \iint_A f(x,y) dx dy$ untuk setiap daerah A dibidang xy.

Contoh: Suatu perusahaan coklat mengirim berkotak-kotak coklat dengan campuran krem, tofe serta kacang berlapis coklat cerah dan pekat. Bila kotak dipilih secara serentak, serta X dan Y masing-masing menyatakan proporsi yang krem berlapis coklat cerah dan pekat dan misalkan fungsi densitas gabungannya adalah

$$f(x,y) = \frac{2}{5}(2x+3y)$$
, untuk $0 \le x \le 1$, $0 \le y \le 1$

= 0 , untuk x,y yang lain.

Akan ditunjukkan bahwa ketiga syarat diatas terpenuhi.

i. Untuk $0 \le x \le 1$ dan $0 \le y \le 1$ terlihat dengan jelas bahwa

$$f(x,y) = \frac{2}{5}(2x+3y) \ge 0$$
 dan $f(x,y) = 0$ untuk x,y yang

lain, sehingga syarat 1 terpenuhi

ii.
$$\int_{-\infty}^{\infty} f(x,y) dxdy = \int_{0}^{\infty} \frac{1}{5} (2x+3y)$$

$$= \int_{0}^{1} \frac{2x^{2}}{5} + \frac{6xy}{5} \Big|_{x=0}^{x=1} dy$$

$$= \int_{0}^{1} \left(\frac{2}{5} + \frac{6y}{5} \right) dy = \frac{2y}{5} + \frac{3y^{2}}{5} \Big|_{y=0}^{y=1}$$

$$= \frac{2}{5} + \frac{3}{5} = 1$$

terlihat syarat 2 terpenuhi.

iii. Karena A daerah
$$\{(x,y)|0 \le x \le 1, 0 \le y \le 1\}$$
 maka
$$P[(x,y) \in A] = P[0 \le x \le 1, 0 \le y \le 1]$$

$$= \int_{0}^{1} \int_{0}^{2} \frac{2}{5} (2x + 3y) dx dy = 1$$

(seperti bukti no.ii)

terlihat bahwa f(x,y) memenuhi ketiga syarat tersebut sehingga dapat kita katakan bahwa f(x,y) merupakan fungsi densitas gabungan.

2.1.6. Fungsi Densitas Marginal

Bila diketahui fungsi densitas gabungan f(x,y) dari peubah acak kontinyu X dan Y maka distribusi peluang g(x) dari X sendiri dapat diperoleh dengan pengintegralan f(x,y) terhadap Y, begitu juga distribusi peluang h(y) dapat diperoleh dengan pengintegralan f(x,y) terhadap X. Selanjutnya kita sebut g(x) dan h(y) masing-masing sebuah fungsi densitas marginal dari X dan Y.

Definisi : Fungsi Densitas Marginal dari X sendiri dan Y sendiri didefinisikan sebagai

$$g(x) = \int_{-\infty}^{\infty} f(x, y) dy \text{ dan } h(y) = \int_{-\infty}^{\infty} f(x, y) dx$$

Contoh: Dari contoh 2.1.2. cari g(x) dan h(y)nya.

Penyelesaian : Menurut definisi $g(x) = \int_{-\infty}^{\infty} f(x, y) dy$

$$=\int_0^2 \frac{2}{5}(2x+3y)dy$$

$$= \frac{4xy}{5} + \frac{6y^2}{10}\Big|_{y=0}^{y=1} = \frac{4x+3}{5}$$

untuk $0 \le x \le 1$ dan g(x) = 0 untuk yang lain, begitu pula

untuk
$$h(x) = \int_{0}^{x} \frac{2}{5} (2x+3y) dx = \frac{2x^2}{5} + \frac{6xy}{5} \Big|_{x=0}^{x=1} = \frac{2}{5} (1+3y)$$

2.1.7. Simetris

Definisi : Variabel random X dikatakan simetris terhadap suatu harga α jika $P(x \ge \alpha + x) = P(x \le \alpha - x)$ untuk setiap x,

Pada dasarnya, jika X adalah variabel random kontinyu, maka X adalah simetris dengan pusat α jika dan hanya jika $F(\alpha - x) = F(\alpha + x)$ untuk $\forall x \in R$. Jika α =0, secara singkat kita katakan bahwa X adalah simetris (atau F adalah simetris).

Contoh : Fungsi
$$f(x) = \frac{3}{4}(1-x^2)$$
 adalah simetris terhadap 0.

Akan ditunjukkan bahwa f(x) = f(-x)

$$f(1/2) = f(-1/2)$$

$$\frac{3}{4}(1 - (1/2)^2) = \frac{3}{4}(1 - (-1/2)^2)$$

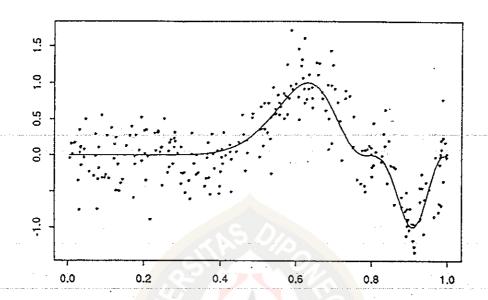
$$\frac{3}{4} \times \frac{3}{4} = \frac{3}{4} \times \frac{3}{4}$$

$$\frac{9}{16} = \frac{9}{16}$$

terlihat bahwa fungsi tersebut simetris terhadap 0.

2.2. Estimasi Densitas Kernel

Penghalusan dari data $\{(X_i,Y_i)\}_{i=1}^n$ meliputi perkiraan dari kurva tanggapan m dalam hubungan regresi seperti terlihat dalam persamaan(1.1.1) yaitu $Y_i = m(X_i) + \varepsilon_i$ dengan i = 1, 2, 3, ..., n. Dari data yang diperoleh pada umumnya harga-harga dari (X_i,Y_i) tidak menunjukkan suatu penyimpangan yang sangat berarti walaupun kadang hal ini terjadi. Dengan kata lain data tersebut terlihat lebih terpusat pada suatu kelompk-kelompok tertentu (data mengelompok) seperti terlihat pada gambar (2.1). Perkiraan yang sesuai untuk kurva regresi m(x) oleh karenanya akan merupakan suatu harga yang mendekati pusat dari kelompok-kelompok itu sendiri.



Gambar 2.1: Plot penyebaran data tabel 1 serta kurva regresi sesungguhnya

Pilihan yang sering dipakai adalah rata-rata dari variabel tanggapan Y mendekati suatu harga X. "Rata-rata lokal" tersebut dapat dipakai sebagai ide dasar dari penghalusan. Untuk lebih jelasnya prosedur ini dapat didefinisikan sebagai

$$\hat{m}_h(x) = n^{-1} \sum_{i=1}^n W_{hi}(x) Y_i \qquad (2.2.1)$$

sedangkan barisan bobot untuk penghalus kernel tersebu didefinisikan sebagai $W_{hi}(x) = \frac{K_h(x-X_i)}{\hat{f}_h(x)}$... (2.2.2)

dimana $K_h(x)$ adalah fungsi kernel yang didefinisikan sebagai $K_h(x) = h^{-1}K(x/h)$ dengan sifat simetris terhadap 0, merupakan fungsi kontinyu dan terintegralkan ke 1 dengan faktor skala h (yang lebih dikenal dengan 'Bandwidth'). Dan

(http://eprints.undip.ac.id)

$$\hat{f}_h(x) = n^{-1} \sum_{i=1}^n K_h(x - X_i) = n^{-1} \sum_{i=1}^n K \left(\frac{x - X_i}{h} \right) \qquad (2.2.3)$$

sebagai estimator densitas kernel. Terdapat 7(tujuh) bentuk dari fungsi kernel yang telah kita kenal yaitu

a	Kernei	Κ(U)
	Uniform	$\frac{1}{2} I(U \le 1)$
	Triangle	$(1- U) \ I(U \le 1)$
	Epanechnikov	$\frac{3}{4}(1-U^2) \ I(U \le 1)$
	Quartik	$\frac{15}{16}(1-U^2)^2 I(U \le 1)$
	Triweight	$\frac{35}{32}(1-U^2)^3 I(U \le 1)$
	G <mark>aussian</mark> .	$\frac{1}{\sqrt{2\pi}}\exp(-\frac{1}{2}U^2)$
	Cosin <mark>us</mark>	$\frac{\pi}{4}\cos(\frac{\pi}{2}U)\ I(U \le 1)$

Selanjutnya fungsi bobot $W_{m}(x)$ pada persamaan(2.2.2) dikenal dengan nama fungsi bobot Nadaraya-Watson, dan oleh karenanya

$$\hat{m}_{h}(x) = n^{-1} \sum_{i=1}^{n} W_{hi}(x) Y_{i}$$

$$= \frac{n^{-1} \sum_{i=1}^{n} K_{h}(x - X_{i}) Y_{i}}{n^{-1} \sum_{i=1}^{n} K_{h}(x - X_{i})} = \frac{\hat{r}_{h}(x)}{\hat{f}_{h}(x)} \qquad (2.2.4)$$

This document is Undip Institutional Repository Collection. The author(s) or copyright owner(s) agree that UNDIP-IR may, without changing the content, translate the submission to any medium or format for the purpose of preservation. The author(s) or copyright owner(s) also agree that UNDIP-IR may keep more than one copy of this submission for purpose of security, back-up and preservation:

dikenal dengan nama Estimator Nadaraya-Watson.

Selanjutnya untuk mengetahui sifat dari $m_h(x)$ terhadap m(x) maka kita pertimbangkan nilai ekspektasi dari elemen $m_h(x)$. Bila didefinisikan $r(x) = \int y f(x,y) dy = m(x) f(x)$ maka

$$E[\hat{r}_h(x)] = E[n^{-1} \sum_{i=1}^n K_h(x - X_i) Y_i]$$

$$= E[K_h(x - X)Y]$$

$$= \iint y K_h(x - u) f(y|u) f(u) dy du$$

$$= \int K_h(x - u) f(u) (\int y f(y|u) dy) du$$

$$= \int K_h(x - u) f(u) (E[Y|X = u]) du$$

$$= \int K_h(x - u) f(u) m(u) du$$

$$= \int K_h(x - u) f(u) du$$

dimisalkan $\frac{x-u}{h} = (-s)$, maka x+sh=u dan du=hds maka persamaan diatas menjadi

$$= h^{-1} \int K(\frac{x-u}{h}) r(u) du$$

$$= h^{-1} \int K(s) r(x+sh) (hds)$$

$$= \int K(s) [r(x) + shr'(x) + \frac{s^2 h^2}{2!} r''(x) + O(h^2)] ds$$

$$= r(x) + \frac{h^2}{2!} r''(x) \mu_2(K) + O(h^2) \qquad , h \to 0 \qquad ... (2.2.5)$$

Term linier $\int K(s)shr'(x)ds=0$ karena diketahui bahwa K adalah simetris terhadap 0. Dari sini $\overset{\circ}{r_h}(x)$ adalah tidak bias asimtotik untuk $h\to 0$. Selanjutnya untuk menghitung variansi dari $\overset{\circ}{r_h}(x)$ dimisalkan $s^2(x)=E[Y^2\big|X=x]$ maka

$$Var[\hat{r}_{h}(x)] = Var[n^{-1} \sum_{i=1}^{n} K_{h}(x - X_{i})Y_{i}]$$

$$= n^{-1}h^{-2} \{ E[K^{2}(\frac{x - X}{h})Y^{2}] - E^{2}[K(\frac{x - X}{h})Y] \}$$

$$= n^{-1}h^{-2} \{ \iint K^{2}(\frac{x - X}{h})y^{2}f(y|u)f(u)dydu \}$$

$$-[\iint K(\frac{x - X}{h})yf(y|u)f(u)dydu]^{2} \}$$

$$= n^{-1}h^{-1} \{ \iint K^{2}(s)y^{2}f(y|x + sh)f(x + sh)dyds \}$$

$$-[\iint K(s)yf(y|x + sh)f(x + sh)dyds]^{2} \}$$

$$= n^{-1}h^{-1} \{ \iint K^{2}(s)E[Y^{2}|X = x + sh]f(x + sh)ds \}$$

 $-h[\int K(s)E[Y|X=x+sh]f(x+sh)ds]^{2}\}$

catatan bahwa m(x)=E[Y|X=x] , r(x)=m(x)f(x) dan $s^2(x)=E[Y^2|X=x]$, sekarang dipertimbangkan untuk kasus $h\to 0$ dan $nh\to \infty$:

$$Var[\hat{r}_{h}(x)] = n^{-1}h^{-1}\{\int K^{2}(s)s^{2}(x+sh)f(x+sh)ds -h[\int K(s)m(x+sh)f(x+sh)ds]^{2}\}$$

$$= n^{-1}h^{-1}\{\int K^{2}(s)s^{2}(x+sh)f(x+sh)ds$$

$$-h[\int K(s)r(x+sh)ds]^{2}\}$$

$$= n^{-1}h^{-1}\int K^{2}(s)s^{2}(x+sh)f(x+sh)ds$$

$$-n^{-1}[\int K(s)r(x+sh)ds]^{2}$$

$$= n^{-1}h^{-1}[s^{2}(x)f(x)\int K^{2}(s)ds + O(h^{2})]$$

$$-n^{-1}[r(x)\int K(s)ds + O(h^{2})]^{2}$$

$$= n^{-1}h^{-1}s^{2}(x)f(x)\int K^{2}(s)ds + O(n^{-1}h)$$

$$-n^{-1}r^{2}(x) + O(n^{-1}h^{2})$$

$$= n^{-1}h^{-1}s^{2}(x)f(x)\int K^{2}(s)ds + O((nh)^{-1})$$

$$= n^{-1}h^{-1}s^{2}(x)f(x)\|K\|_{2}^{2} + O((nh)^{-1}), \quad nh \to \infty \qquad (2.2.6)$$

Bila kita jumlahkan bias² persamaan(2.2.5) dan persamaan(2.2.6)

maka kita peroleh formula Rata-rata Kesalahan Kuadrat $\overline{MSE[r_h(x)]}$.

$$MSE[\hat{r}_{h}(x)] = Var(\hat{r}_{h}(x)) + [Bias(\hat{r}_{h}(x))]^{2}$$

$$= n^{-1}h^{-1}s^{2}(x)f(x)||K||_{2}^{2} + \frac{h^{4}}{4}(r''(x)\mu_{2}(K))^{2}$$

$$+O(h^{4}) + O((nh)^{-1}) \qquad (h \to 0, nh \to \infty) \qquad ... (2.2.7)$$

dari sini bila kita ambil $h \to 0$ dan $nh \to \infty$, kita peroleh $MSE[\hat{r}_h(x)] \to 0$, sebagai akibatnya adalah $\hat{r}_h(x) \to r(x)$. Begitu juga untuk $\hat{f}_h(x)$ nya, dari sini kita peroleh

This document is Undip Institutional Repository Collection. The author(s) or copyright owner(s) agree that UNDIP-IR may, without changing the content, translate the submission to any medium or format for the purpose of preservation. The author(s) or copyright owner(s) also agree that UNDIP-IR may keep more than one copy of this submission for purpose of security, back-up and preservation:

(http://eprints.undip.ac.id)

$$\hat{m}_h(x) = \frac{\hat{r}_h}{\hat{f}_h} \to \frac{r(x)}{f(x)} = m(x) \qquad (h \to 0, nh \to \infty)$$

Dari keterangan diatas kita peroleh suatu konsistensi (ketepatan terhadap kurva m(x)) dari estimasi Nadaraya-Watson $\stackrel{\wedge}{m_h}(x)$ untuk $h \to 0$ dan $nh \to \infty$.