ABSTRAK

Pada Program Linier Sasaran Ganda, yang fungsi sasarannya berbentuk Maks \(\{ Cx = z | x \in S \} \), dengan \(C \) adalah matrik kriteria ukuran \(k \times n \), maka jika tiap-tiap sasaran \(c_i x \) dengan \(c_i \) adalah elemen-elemen baris ke-\(i \) dari \(C \) dikalikan dengan suatu bobot \(\lambda_i \), yang didapat dari kombinasi linier konvek dari vektor yang membentuk kerucut kriteria, akan diperoleh sasaran berbobot sebanyak \(k \). Kemudian sasaran berbobot sebanyak \(k \) tersebut, dijumlahkan menjadi suatu bentuk komposit \(\lambda^T C x \).

Jika diambil \(\Lambda = \{ \lambda \in \mathbb{R}^k | \lambda_i > 0, \sum_{i=1}^{k} \lambda_i = 1 \} \) akan diperoleh bentuk Program Linier Jumlahan Bobot yaitu Maks \(\{ \lambda^T C x | x \in S \} \). Maksimal dari Program Linier Sasaran Ganda Jumlahan Bobot tersebut akan merupakan solusi yang optimal dari Program Linier Sasaran Ganda, jika titik yang merupakan solusi adalah titik efisien.