Ratnasari , Lucia (1996) Matriks kapasita terminal. Undergraduate thesis, FMIPA UNDIP.
PDF Restricted to Repository staff only 2099Kb | ||
| PDF 16Kb | |
| PDF 228Kb | |
| PDF 324Kb | |
| PDF 295Kb | |
| PDF 1139Kb | |
PDF Restricted to Repository staff only 616Kb | ||
| PDF 211Kb | |
| PDF 208Kb |
Abstract
Suatu jaringan komunikasi yang disajikan dalam graph C V , E , c , f 3 merupakan jaringan komunikasi dengan himpunan titik C vertek V , himpunan garis C edge D E , fungsi kapasitas c , dan fungsi aliran f Jika semua garisnya tidak mempunyai arah maka disebut jaringan komunikasi tak berarah . Dalam jaringan komunikasi ini setiap garisnya mempunyai kapasitas atau bobot yang disebut kapasitas garis Dengan memper hati k an kapasitas kapasitas gar i snya dapat ddtentukan kapasitas terminal "1".. Aari titik 1 ke j Semua pasangan titik - titik dalam jaringan komunikasi mempunyai kapasitas terminal yang dapat disajikan dalam bentuk matriks yang disebut matriks kapasitas terminal Selanjutnya dari matriks kapasitas terminal ini dapat disusun suatu jaringan ekuivalen tree A communication net which represented by graph G C V , E c , f ) is a communication net with vertex set V , arc set E , capacity function c , and flow function f If all edges are non oriented , a net is called an undirected communication net . In these communication net , each edges have capacities or weights are called edge capacities By consider edge capacities can be computed terminal capacity "I".. from vertex i to vertex j . All pairs of vertexs in a communication net have terminal capacity which can be described by a matrix called terminal capacity matrix . When terminal capacity matrix can be constructed a net equivalent tree .
Item Type: | Thesis (Undergraduate) |
---|---|
Subjects: | Q Science > QA Mathematics |
Divisions: | Faculty of Science and Mathematics > Department of Mathematics |
ID Code: | 31540 |
Deposited By: | Mr UPT Perpus 1 |
Deposited On: | 23 Nov 2011 07:53 |
Last Modified: | 23 Nov 2011 07:53 |
Repository Staff Only: item control page