ABSTRAK

Sebuah pendekatan untuk meminimalkan program taklinier berkendala ketidaksamaan dengan cara membentuk barisan masalah tanpa kendala yaitu dengan menggabungkan fungsi-fungsi kendala itu ke dalam fungsi tujuan. Kemudian barisan masalah tanpa kendala tersebut diselesaikan dengan cara iterasi sampai diperoleh nilai minimal yang konvergen.

\[
\begin{align*}
\min_{\mathbf{x} \in \mathbb{R}^n} \quad & f(\mathbf{x}) \\
dengan kendala: \\
g_i(\mathbf{x}) & \geq 0, \quad i = 1, 2, \ldots, m
\end{align*}
\]

Dibah menjadi bentuk:

\[
\begin{align*}
\min_{\mathbf{x} \in \mathbb{R}^n} \quad & L(\mathbf{x}, r_k) = f(\mathbf{x}) - r_k \sum_{i=1}^{m} \epsilon_i g_i(\mathbf{x}) \\
di mana: \\
\mathbb{R}^n & \text{ adalah daerah interior fisibel.} \\
r_k & \text{parameter positif dengan } k=1, 2, \ldots.
\end{align*}
\]