BAB V
KESIMPULAN

Dari pembahasan-pembahasan pada bab-bab sebelumnya seperti diagonalisasi matriks, diagonalisasi matriks secara orthogonal dan diagonalisasi orthogonal bentuk kuadrat akhirnya dapat disimpulkan:

1. (i) Matriks A dapat didiagonalisasi oleh matriks P dimana kolom-kolomnya adalah vektor-vektor eigen dari matriks A.

(ii) Matriks A dapat didiagonalisasi secara orthogonal oleh matriks orthogonal P dimana kolom-kolomnya adalah vektor-vektor orthonormal dari vektor vektor eigen matriks A.

2. Dari diagonalisasi bentuk kuadrat $x^T A x$ oleh matriks orthogonal P dan substitusi variabel baru $x = Py$ pada $x^T A x$ akan didapatkan suatu bentuk kuadrat tanpa suku-suku hasil kali silang, yaitu:

$$x^T A x = y^T A y = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \ldots + \lambda_n y_n^2$$

dengan $\lambda_1, \lambda_2, \ldots, \lambda_n$ adalah nilai-nilai eigen matriks dari bentuk kuadrat $x^T A x$ dan $D = P^T A P$.

3. Dengan menerapkan diagonalisasi orthogonal bentuk kuadrat pada persamaan konik dan kuadrik akan didapatkan konik dan kuadrik dalam persamaan baku, sehingga konik dan kuadrik tersebut mudah diidentifikasi.