BAB II
TEORI PENUNJANG

2.1. Himpunan

Definisi 1

Himpunan adalah kumpulan sesuatu (benda, bilangan, hewan, dan lain-lain) yang mempunyai ciri sama sesuai dengan ketentuan yang ditetapkan.

Contoh 9

H adalah himpunan bilangan prima yang lebih kecil dari 10, atau ditulis \(H = \{2, 3, 5, 7\} \).

Definisi 2

Saat elemen \(a \) adalah anggota suatu himpunan \(H \) dan ditulis \(a \in H \), jika \(a \) memenuhi ketentuan yang dipersyaratkan himpunan \(H \).

Contoh 10

2 adalah anggota himpunan \(H \) pada contoh 9 karena 2 adalah bilangan prima dan lebih kecil dari 10, sehingga ditulis \(2 \in H \). Jika \(b \) bukan anggota \(H \) ditulis \(b \notin H \).

Definisi 3

Himpunan \(H \) dikatakan menjadi himpunan bagian (subset) dari himpunan \(K \), ditulis dengan \(H \subseteq K \) jika dan hanya jika setiap anggota \(H \) adalah anggota \(K \).
Contoh 11

H = \{1,2,3,4\}, K = \{1,2,3,4,5,6\} maka :

H adalah himpunan bagian dari himpunan K.

Catatan :

Setiap himpunan adalah himpunan bagian dari himpunan itu sendiri.

Definisi 4

Himpunan yang tidak mempunyai anggota disebut himpunan kosong dan ditulis dengan ∅.

Teorema 1

Himpunan kosong adalah himpunan bagian dari semua himpunan.

Bukti :

Ambil sebarang himpunan H dan andaikan ∅ bukan himpunan bagian H. Ini berarti terdapat x \in ∅ sedemikian sehingga x \notin H. Hal ini bertentangan dengan ∅ tidak mempunyai anggota. Sehingga pengandaian harus diingkar. Jadi ∅ adalah himpunan bagian dari semua himpunan.

Definisi 5

Himpunan bagian dari himpunan H disebut himpunan bagian murni jika himpunan bagian tersebut bukan himpunan kosong dan himpunan H itu sendiri.

2.2. Beberapa Definisi Dasar dalam Graph

Definisi 6
Graph $G = (V,E)$ adalah suatu sistem matematika yang terdiri dari himpunan berhingga tidak kosong $V = \{v_1,v_2,v_3, \ldots, v_n\}$ yang merupakan himpunan titik dan himpunan $E = \{e_1,e_2,e_3, \ldots, e_m\}$ yang merupakan himpunan garis, dengan suatu relasi dari E yang merelaskan V ke V.

Contoh 12

Gambar 9 menunjukkan dua macam graph.

![Graph Diagram](image)

Gambar 9

Keterangan:
Graph dalam gambar 9.a adalah merupakan graph yang tidak berlabel (bertanda).

Graph dalam gambar 9.b merupakan graph yang berlabel (bertanda) dengan $V = \{v_1,v_2,v_3,v_4\}$ dan $E = \{e_1,e_2,e_3,e_4\}$.

Definisi 7
Graph terhubung adalah graph yang untuk setiap dua titik di dalamnya minimal mempunyai sebuah lintasan yang menghubungkan kedua titik tersebut.

Contoh 13

Gambar 10.a adalah sebuah graph terhubung dan gambar
10. b adalah sebuah graph yang tak terhubung.

Gambar 10

Definisi 8

Garis \(e_k \) menghubungkan titik \(v_i \) dengan titik \(v_j \), atau ditulis \(e_k = (v_i, v_j) \) maka dikatakan garis \(e_k \) insiden terhadap titik \(v_i \) dan juga insiden titik \(v_j \) atau dikatakan titik \(v_i \) dan titik \(v_j \) insiden terhadap garis \(e_k \), dan titik \(v_i \) dan titik \(v_j \) dikatakan sebagai adjacent (terhubung langsung).

Contoh 14

Dalam graph gambar 10. b, garis \(e_1 \) adalah contoh insiden terhadap titik \(v_1 \) dan \(v_2 \), dan titik \(v_1 \) dan \(v_2 \) dikatakan sebagai adjacent (terhubung langsung).

Catatan:

Dua garis yang insiden pada satu titik juga dikatakan sebagai adjacent.

Definisi 9

\(G = (V, E) \) disebut subgraph (graph bagian) dari graph \(G^* = (V^*, E^*) \) jika \(V \) merupakan himpunan bagian dari \(V^* \) dengan \(V \) tidak kosong dan \(E \) merupakan himpunan bagian \(E^* \)
serta \(G = (V,E) \) adalah merupakan suatu graph.

Contoh 15

Graph gambar 11.b adalah merupakan subgraph dari graph gambar 11.a.

Definisi 10

Komponen graph adalah subgraph dari suatu graph yang masih merupakan graph terhubung.

Contoh 16

Graph dalam gambar 12 terdiri dari dua komponen graph yaitu graph dengan himpunan titik \(V_a = \{v_2, v_3, v_4\} \) dan graph dengan himpunan titik \(V_b = \{v_1, v_5\} \).

Definisi 11

Subgraph yang memuat semua titik dari graphnya disebut spanning subgraph.

Contoh 17

Graph gambar 12 adalah merupakan spanning subgraph dari graph gambar 11.a.
Definisi 12

Graph sederhana adalah graph yang setiap dua titik dalam graph tersebut maksimum dihubungkan secara langsung oleh sebuah garis dan tidak mempunyai loop (garis yang berawal dan berakhir pada satu titik).

Contoh 18

Graph-graph dalam gambar 11, gambar 12 adalah merupakan contoh-contoh graph sederhana.

Definisi 13

Multigraph adalah graph yang tidak mempunyai loop dan terdapat sedikitnya dua titik di dalam graph tersebut yang dihubungkan secara langsung oleh lebih dari sebuah garis.

Contoh 19

Gambar 13 adalah merupakan suatu multigraph dengan terdapatnya dua buah titik yang dihubungkan secara langsung oleh lebih dari sebuah garis yaitu titik \(v_1 \) dan \(v_3 \) dan juga \(v_6 \) dan \(v_7 \).
Definisi 14

Graph yang mempunyai garis yang berawal dan berakhir pada satu titik (loop) disebut pseudograph.

Contoh 20

Gambar 14 merupakan contoh pseudograph.

Definisi 15

Path adalah deretan titik-titik dan garis-garis secara bergantian dengan semua titiknya adalah berlainan kecuali mungkin titik awal dan titik akhir (jika pathnya adalah path tertutup).
Path dengan titik awal dan titik akhir sama (path tertutup) disebut cycle.
Panjang cycle adalah jumlah garis dalam cycle tersebut.

Contoh 21: lihat gambar 15
Contoh suatu path dalam gambar 15 adalah:

\[v_1 e_1 v_2 e_2 v_3 e_4 v_4. \]

Contoh cycle dalam gambar 15 adalah:

\[v_2 e_5 v_4 e_4 v_5 e_3 v_3 e_2 v_2 \] dengan panjang 4.

2.3. Derajat Titik dalam Graph

Definisi 16

Banyaknya garis (jumlah garis) yang insiden pada titik \(v_i \) disebut dengan derajat (degree) dari \(v_i \) dan ditulis \(d(v_i) \), dengan garis yang berupa loop menyumbang derajat dua.

Contoh 22

Pada graph gambar 14, garis \(e_1 \) dan \(e_2 \) insiden pada titik \(v_4 \) dan tidak ada garis lain yang insiden \(v_4 \) maka jumlah garis yang insiden \(v_4 \) adalah dua sehingga derajat dari \(v_4 \) adalah dua, sedang derajat \(v_2 \) dan \(v_3 \) adalah 4 dan 2.

Teorema 2

Jumlah derajat titik-titik dalam suatu graph adalah dua kali jumlah garisnya.

Bukti:

Setiap garis dalam graph adalah mempunyai titik awal dan titik akhir, sehingga setiap garis menyumbang dua derajat. Maka jumlah derajat titik-titik dalam setiap graph adalah dua kali jumlah garisnya.
Contoh 23

Pada graph gambar 16 adalah merupakan graph dengan 6 garis dan 5 titik, dengan derajat titik-titiknya adalah sebagai berikut:

\[d(v_1) = d(v_2) = d(v_3) = 3 \]
\[d(v_4) = 1 \]
\[d(v_5) = 2 \]
\[\sum (d(v_i)) = d(v_1) + d(v_2) + d(v_3) + d(v_4) + d(v_5) \]
\[= 3 + 3 + 3 + 1 + 2 \]
\[= 12 = 2 \times 6. \]

Gambar 16

Akibat 1

Jumlah derajat (\(\sum (d(v_i)) \)) dalam setiap graph adalah genap.

Bukti:

Karena setiap bilangan asli dikalikan 2 hasilnya adalah genap.
2.4. Pewarnaan dalam Graph

2.4.1. Pewarnaan Titik

Definisi 17

Pewarnaan titik dari sebuah graph adalah pemberian warna pada titik-titik dalam graph tersebut sedemikian sehingga tidak ada dua titik yang bertetangga (adjacent) mendapat warna sama.

Contoh 24

Gambar 17 adalah sebuah graph yang telah diwarnai titik.

![Gambar 17](image.png)

Definisi 18

Jumlah minimum warna yang diperlukan untuk mengadakan pewarnaan titik terhadap suatu graph disebut dengan bilangan kromatik.

Contoh 25

Bilangan kromatik dari graph gambar 17 adalah tiga, karena graph gambar 17 dapat diwarnai titik minimal dengan tiga warna seperti yang ditunjukkan gambar 18
2.4.2. Pewarnaan Garis

Definisi 19

Pewarnaan garis dalam graph adalah penandaan dengan warna pada garis-garis graph tersebut sedemikian sehingga tidak ada garis yang bertetangga (adjacent/ insiden pada satu titik) menerima warna sama.

Contoh 26

Gambar 18 menunjukkan sebuah graph yang telah diwarnai garis.

Gambar 19.
Definisi 20
Jumlah warna terkecil yang dibutuhkan untuk mengadakan pewarnaan garis pada suatu graph disebut dengan indeks kromatik.

Contoh 27
Indeks kromatik dari graph gambar 20 adalah empat seperti yang ditunjukkan gambar 20.

Gambar 20

2.5. Multigraph Bipartite Reguler

2.5.1. Multigraph Bipartite

Definisi 21
Graph bipartite \(G = (V,E) \) adalah graph yang himpunan titik \(V \) dapat dipisah menjadi dua himpunan bebas \(V_a \) dan \(V_b \) sedemikian sehingga setiap garis \(e \in E \) menghubungkan titik di \(V_a \) dengan titik di \(V_b \).

Dua himpunan \(V_a \) dan \(V_b \) adalah saling bebas bila \(V_a \cap V_b = \emptyset \).

Graph \(G = (V,E) \) adalah graph bipartite dengan dua himpunan titik saling bebas \(V_a \) dan \(V_b \) maka ditulis sebagai graph bipartite \(G = (V,E) \) dengan bipartisi \((V_a, V_b) \).
Contoh 28

Gambar 21 adalah graph bipartite dengan $V_a = \{v_1, v_2, v_3\}$ dan $V_b = \{v_4, v_5, v_6\}$.

Definisi 22

Jika dalam graph bipartite $G = (V,E)$ terdapat sedikitnya dua titik yang dihubungkan secara langsung oleh lebih dari sebuah garis maka disebut multigraph bipartite.

Contoh 29

Gambar 22 menunjukkan suatu multigraph bipartite dengan titik v_2 dan titik v_5 dihubungkan oleh dua garis dan titik v_3 dan titik v_6 juga dihubungkan secara langsung oleh dua garis.
Teorema 3

Graph $G = (V, E)$ adalah graph bipartite jika dan hanya jika tidak mempunyai cycle dengan panjang ganjil.

Bukti: Pembuktian dibuat 2 langkah.

1). Ke kanan

Diketahui bahwa Graph $G = (V, E)$ adalah graph bipartite. Akan dibuktikan bahwa G tidak mempunyai cycle dengan panjang ganjil. Misalkan bipartisi dari $G = (V, E)$ adalah (V_a, V_b). Misal C adalah suatu cycle di dalam G. Apabila C dimulai dengan menentukan sebuah titik di V_a sebagai v_1, maka titik-titik di V_b akan mempunyai indeks genap dan C berbentuk $v_1, v_2, v_3, v_4, \ldots, v_{2n-1}, v_{2n}, v_1$. $v_1, v_3, v_5, v_7, \ldots, v_{2n-1}$ adalah anggota V_a dan $v_2, v_4, v_6, \ldots, v_{2n}$ adalah anggota dari V_b. Jumlah garis dari v_1 sampai v_{2n} adalah sebanyak $2n - 1$ yaitu ganjil maka bila ditambah garis dari v_{2n} ke v_1 jumlah garisnya menjadi genap yaitu $2n$. Jadi setiap cycle dalam graph bipartite panjangnya selalu genap.

2) Ke kiri
Diketahui bahwa graph \(G = (V,E) \) tidak mempunyai cycle dengan panjang ganjil. Akan dibuktikan bahwa \(G=(V,E) \) adalah graph bipartite. Ambil sebarang titik \(v_i \) dalam \(G \). Semua titik dalam \(G \) yang mempunyai lintasan dari \(v_i \) dengan panjang genap dikumpulkan dalam himpunan \(V_a \). Titik-titik lainnya diberi indeks genap dan dikumpulkan dalam himpunan \(V_b \). Selanjutnya akan ditunjukkan bahwa tidak ada dua titik di \(V_a \) yang bertetangga (adjacent), sebab jika ada yang adjacent (misal titik \(v_{2n+1} \) dan titik \(v_3 \)) maka terdapat suatu cycle \(v_3,v_2,v_1,\ldots,v_{2n+1},v_3 \) banyaknya garis. dari \(v_3 \) ke \(v_{2n+1} \) adalah genap yaitu \(n \) dan bila ditambah dengan garis dari \(v_{2n+1} \) ke \(v_3 \) maka jumlah garisnya menjadi ganjil. Bertentangan dengan yang diketahui, sehingga yang benar adalah tidak ada dua titik dalam \(V_a \) yang adjacent. Misalkan \(a,b\in V_b \). Jika diambil lintasan terpendek dari \(v_i \) ke \(a \) maka panjang lintasan tersebut adalah ganjil (karena \(v_i \in V_a \)) dan panjang lintasan dari \(v_i \) ke \(b \) adalah ganjil. Maka jika \(a \) dan \(b \) bertetangga terdapat cycle dari \(v_i \) ke \(a \) ke \(b \) ke \(v_i \) dengan panjang ganjil +1 + ganjil = ganjil. Bertentangan dengan yang diketahui, sehingga yang benar adalah tidak ada dua titik di \(V_b \) yang adjacent. Sehingga \(V \) terbagi menjadi dua himpunan bebas \(V_a \) dan \(V_b \) dan setiap garis dalam \(G \) menghubungkan titik di \(V_a \) dengan titik di \(V_b \). \(G \) adalah graph bipartite.

Teorema 4

Jika \(G = (V,E) \) adalah graph bipartite dengan bipartisi \((V_a,V_b) \) maka \(\Sigma d(V_a) = \Sigma d(V_b) \).
Bukti:

Setiap garis dalam graph bipartite $G = (V,E)$ dengan bipartisi (V_a, V_b) selalu menghubungkan titik di V_a dengan titik di V_b. Sehingga setiap garis dalam G menyumbang satu derajat pada V_a dan satu derajat pada V_b, maka jumlah derajat titik-titik di V_a ($\sum d(V_a)$) sama dengan derajat titik-titik di V_b ($\sum d(V_b)$).

2.5.2. Multigraph Reguler

Definisi 23

Graph reguler adalah graph yang setiap titiknya mempunyai derajat sama.

Contoh 30

Gambar 23 menunjukkan dua graph reguler, dengan graph gambar 23.a adalah graph reguler dengan derajat setiap titiknya nol, sedang gambar 23.b adalah graph reguler dengan derajat setiap titiknya dua.
Definisi 24

Jika dalam suatu graph reguler terdapat sedikitnya dua titik yang dihubungkan secara langsung oleh lebih dari sebuah garis dan tidak mengandung garis yang berupa loop, maka disebut multigraph reguler.

Contoh 31

Gambar 24 adalah merupakan salah satu contoh multigraph reguler dengan derajat setiap titiknya tiga.

\[G = (V, E) \] adalah graph reguler dengan derajat \(m \) maka \[\sum d(V_i) = m x |V_i|, \] dengan \(|V_i| \) adalah jumlah titik dalam \(G \) dan \(\sum d(V_i) \) adalah jumlah derajat semua titik \(G \).

Bukti:

Jumlah titik = \(|V_i| \), derajat tiap titik = \(m \), maka:

\[\sum d(V_i) = m_1 + m_2 + m_3 + m_4 + \ldots + m |V_i|, \]

dengan \(m_1 = m_2 = \ldots = m |V_i| = m \).

\[= m X |V_i| \]
Contoh 32

Graph gambar 24 mempunyai titik sejumlah 8 dan derajat tiap titik adalah tiga, maka:

\[\Sigma d(v_i) = d(v_1) + d(v_2) + d(v_3) + \ldots + d(v_8) \]
\[= 3 + 3 + 3 + \ldots + 3 \]
\[= 3 \times 8 \]
\[= 24 \]

Akibat 2

Jumlah garis dalam multigraph reguler dengan derajat \(m \) adalah \(m|V|/2 \), \(|V| \) adalah jumlah titik dalam multigraph tersebut.

Bukti:

Setiap garis menyumbang derajat dua, maka jumlah garis dalam setiap graph adalah setengah jumlah derajatnya

\((1/2(m|V|)) \).

2.5.3. Multigraph Bipartite Reguler

Definisi 25

Graph bipartite reguler \(G = (V,E) \) adalah suatu graph yang himpunan titik \(V \)-nya dapat dipisah menjadi dua himpunan bebas \(V_a \) dan \(V_b \), sedemikian sehingga untuk setiap garis \(e \in E \) maka garis \(e \) menghubungkan titik di \(V_a \) dengan titik di \(V_b \) dan derajat setiap titik di dalam \(V \) adalah sama.

Contoh 33

Gambar 25 adalah graph bipartite reguler dengan derajat tiap titiknya adalah tiga dan himpunan titik \(V_a \) =
Definisi 26
Jika dalam graph bipartite reguler \(G = (V,E) \) terdapat sedikitnya dua titik yang dihubungkan secara langsung oleh lebih dari sebuah garis maka \(G = (V,E) \) disebut multigraph bipartite reguler.

Contoh 34
Gambar 26 adalah multigraph bipartite reguler derajat tiga, dengan titik \(v_1 \) dan \(v_5 \) dihubungkan langsung oleh dua garis, begitu juga titik \(v_4 \) dan \(v_8 \).
Teorema 6

\[G = (V,E) \] adalah multigraph bipartite reguler dengan
bipartisi \((V_a,V_b)\) maka jumlah titik di \(V_a(|V_a|)\) sama
dengan jumlah titik di \(V_b(|V_b|)\).

Bukti :

Dari teorema 4 diketahui bahwa untuk setiap graph
bipartite dengan bipartisi \((V_a,V_b)\) maka \(\sum d(V_a) = \sum d(V_b)\).
Karena derajat setiap titik dalam multigraph bipartite
reguler derajat \(m\) dengan \(m \geq 2\) adalah sama dengan \(m\), maka
jumlah titik di \(V_a(|V_a| = \langle \Sigma d(V_a)\rangle/m = \langle \Sigma d(V_a)\rangle/m = \) jumlah
titik di \(V_b(|V_b|)\).

Contoh 35

Pada graph gambar 26 jumlah titik di \(V_a\) sama dengan
jumlah titik di \(V_b\) yaitu empat titik.

Akibat 3

Untuk setiap multigraph bipartite reguler jumlah
titiknya adalah genap.

Bukti :

Karena \(|V_a| = |V_b|\), sehingga jumlah semua titiknya
adalah \(2 \times |V_a| = 2 \times |V_b| = \) genap.

2.6. Himpunan Potong

Definisi 27

Himpunan pemutus (disconecting set) \(F\) adalah himpunan
garis dalam suatu graph terhubung \(G = (V,E)\) dengan \(F \subseteq E\)
sedemikian sehingga graph \(G' = (V,E-F)\) merupakan graph
tak terhubung, dengan \(E-F\) adalah himpunan garis-garis yang
menjadi anggota E tetapi tidak menjadi anggota F.

Contoh 36

Himpunan garis \(F = \{ e_7, e_8, e_9, e_{10}, e_{11}, e_{12} \} \) merupakan himpunan pemutus dari graph gambar 27.a dan gambar 27.b adalah gambar 27.a setelah garis - garis anggota F dihilangkan.

Gambar 27

Definisi 28

Himpunan potong \(K \) adalah himpunan garis-garis yang menghubungkan titik-titik di \(W \) dengan titik-titik di \(W' \) di
dalam suatu graph terhubung $G = (V,E)$, dimana $V = W \cup W'$

sedemikian sehingga $W \cap W' = \emptyset$, $W \neq \emptyset$ dan $W' \neq \emptyset$.

Contoh 37

Pada graph gambar 27. a bila $W = \{v_1, v_2, v_3, v_6, v_7, v_8\}$
dan $W' = \{v_4, v_5\}$, maka himpunan garis $K = \{e_8, e_9, e_{10}, e_{11}\}$

adalah merupakan himpunan potong.