BAB III PENUNJANG

3.1. RUANG VEKTOR TOPOLOGI

DEFINISI 32

Ruang vektor E atas field K dan disertai topologi merupakan ruang vektor topologi jika :

TVS1 pemetaan $(x,y) \longrightarrow x + y$ dari E x E into E adalah kontinu.

TVS2 pemetaan $(\lambda, \varkappa) \longrightarrow \lambda \varkappa$ dari K x E into E adalah kontinu.

DEFINISI 33

Himpunan A dalam ruang vektor E pada field K adalah absorbing (atau radial pada 0). Jika untuk $n \in E$ terdapat $n \to 0$ sedemikian hingga $n \in A$ untuk semua $n \in K$, sedemikian hingga $n \in A$

Ini berarti $\lambda \varkappa \in A$ untuk setiap $\lambda \ni |\lambda| \le \alpha^{-1}$. Dari TVS2 maka setiap persekitaran dari 0 adalah absorbing.

DEFINISI 34

Himpunan A dalam ruang vektor E pada K adalah balanced (atau circle), jika $\lambda A \subset A$ untuk setiap $\lambda \in K$ sedemikian hingga $|\lambda| \leq 1$.

Jika A balanced dan untuk setiap $\varkappa \in \mathbb{E}$ memuat $\mu \in \mathbb{K}$ sedemikian hingga $\varkappa \in \mu A$, maka A absorbing.

nanging the content, translate the submission to any medium or format for the purpose of preservation. The author(s) or copy wner(s) also agree that UNDIP-IR may keep more than one copy of the submission for purpose of security, back-up and preservation:

Jika $|\lambda| \geq |\mu|$, maka $|\lambda^{-1}\mu| \leq 1$ dan $\kappa \in \mu A = \lambda(\lambda^{-1}\mu)A \subset \lambda A$. Irisan dari sembarang keluarga dari himpunan-himpunan balanced adalah balanced.

Diberikan sembarang himpunan B dalam E, terdapatlah himpunan balanced terkecil A yang memuat B, himpunan A ini disebut balanced hull dari B dan merupakan interseksi dari semua himpunan balanced yang memuat B. Gabungan dari sembarang keluarga dari himpunan-himpunan balanced adalah balanced. A C E, terdapatlah himpunan balanced paling besar B dalam A. Himpunan B disebut pusat balanced (balanced core) dari A. Himpunan B tidak kosong jika dan hanya jika A memuat titik asal.

Himpunan $\varkappa \in E$ termasuk balanced core B dari A jika dan hanya jika $\lambda \varkappa \in A$ untuk semua $\lambda \in K$ sedemikian hingga $\lambda \leq 1$.

Himpunan $C(\varkappa) = \{ |\lambda \varkappa | |\lambda| \le 1 \}$, jelas balanced. Jika $C(\varkappa) \subset A$ maka $C(\varkappa) \subset B$ dan $\varkappa \in B$. Sebaliknya jika $\varkappa \in B$ maka $\lambda \varkappa \in B$ dan fortriori $\lambda \varkappa \in A$ untuk setiap $\lambda \in K$ dimana $|\lambda| \le 1$.

DEFINISI 35

Diberikan X dan Y ruang topologi.

Suatu fungsi $h: X \longrightarrow Y$ dikatakan suatu homeomorphisma. Jika dan hanya jika h dan h⁻¹ adalah
kontinu dan h bijektif.

Diberikan ruang vektor E dan F pada field K dan

 $f : E \longrightarrow F$ merupakan pemetaan linier.

Jika A merupakan himpunan Balanced di E maka f(A) merupakan himpunan balanced di F.

Jika B merupakan himpunan Balanced di F maka $f^{-1}(B)$ merupakan himpunan balanced di E.

TEOREMA 2

Dalam ruang vektor topologi E memuat % yang merupakan system fundamental dari persekitaran- persekitaran dari O sedemikian hingga :

- (NS1) Setiap V ∈ R adalah Absorbing
- (NS2) Setiap V ∈ ℜ adalah Balanced
- (NS3) Untuk setiap V ∈ R memuat U ∈ R sedemikian hingga U + U ⊂ V

Apabila Teorema diatas dibalik :

Diberikan Ruang Vektor E atas field K
dan R merupakan filter basis pada E yang memenuhi
kondisi (NS1) sampai (NS3) maka terdapatlah
topologi yang unik pada E, dimana E merupakan
ruang vektor Topologi dan R merupakan system
fundamental persekitaran dari O.

BUKTI:

E merupakan ruang vektor topologi dan \Re System fundamental persekitaran dari O, maka dalam topologi itu himpunan \mathbb{W} merupakan persekitaran dari titik a $\in \mathbb{E} \iff \mathbb{W}$ memuat himpuan yang berbentuk $\mathbb{V} + \mathbb{A}$, dimana $\mathbb{V} \in \Re$. Ini membuktikan

bahwa topologi dan pastilah topologi yang unik. Lebih jelasnya jika $W_1 \supset W$ dan $W \supset V+a$, dimana $V \in \Re$, maka $W_1 \supset V+a$; itu berarti aksioma (NB1) dipenuhi.

Selanjutnya diberikan W_i (1≤i≤n) merupakan bilangan berhingga dari persekitaran-persekitaran dari a.

Maka masing-masing W_i memuat himpunan V_i + a, dimana $V_i \in \Re$. Sejak \Re adalah filter basis, terdapatlah himpunan $V \in \Re$ yang termuat dalam $\bigcap_{i=1}^{n} V_i$ Maka

$$\bigcap_{i=1}^{n} W_{i} > V + a;$$

∩ W merupakan persekitaran dari a.

Ini membuktikan (NB2).

Untuk setiap V ∈ R kita mempunyai 0 ∈ V definisi dari filter basis tidak ada V yang kosong dan jika $\varkappa \in V$, maka dengan (NS2) $0.\varkappa \in V$. Jika $W \supset V + a$, $V \in \Re$, maka $a \in W$; (NB3) dipenuhi. Akhirnya, diberikan ₩ > V + a, dimana $V \in \Re$. Dengan (NS3) terdapat $U \in \Re$ sedemikian hingga U + U ⊂ V. Maka U + a merupakan persekitaran dari а, dan jika $b \in U + a$, $U + b \subset U + U + a \subset V + a \subset W$; yaitu setiap b ∈ U + a himpunan W merupakan persekitaran dari b, demikian aksioma (NB4) terbukti.

Diberikan a + b = c dan W merupakan persekitaran dari c, maka W memuat himpunan V + c, dimana $V \in \Re$ dan dengan (NS3) terdapatlah $U \in \Re$ sedemikian hingga $U + U \subset V$ maka U + a merupakan persekitaran dari a, U + b merupakan persekitaran dari b, sehingga.

 $(U+a) + (U+b) \subset V + a + b = V + c \subset W$; Yaitu aksioma (TVS1) dipenuhi.

Selanjutnya diberikan $V \in \Re$ dan $\lambda \in K$, terdapatlah $U \in \Re$.

Sedemikian hingga $\lambda U \subset V$. Dari (NS3) dan diberikan $V \in \Re$, untuk suatu $n \in N$ terdapatlah $U \in \Re$ sedemikian hingga $2^n U \subset V$.

Diberikan n yang sangat besar sehingga $|\lambda| \leq 2$ ". Jika U ∈ ℜ sedemikian hingga 2 U ⊂ V, maka dengan <mark>\</mark>2^{-ท}ับ ⊂ บ (NS2) kita mempunyai yaitu $\lambda U \subset 2^n U \subset V$. Diberikan $a \in E$, $\lambda \in K$ dan W merupakan persekitaran dari \lambda. Terdapatlah V ∈ 9€ sedemikian hingga $W > V + \lambda a$ dan dengan (NS3)maka terdapatlah U ∈ 9€ sedemikian $U + U + U \subset V$. Karena dari (NS1) terdapatlah $\varepsilon > 0$ sedemikian hingga $|\eta| \leq \varepsilon$ berarti Terdapatlah T $\in \Re$ sedemikian hingga $\lambda T \subset U$. Lagipula Jika $|\eta| \le 1$ dan $\varkappa - a \in U$, maka (NS2) $\eta(\varkappa-a) \in U$ diambil $S \in \Re$ sedemikian hingga $S \subset T \cap U$. Dari identitas

 $\xi \varkappa - \lambda a = (\xi - \lambda)a + \lambda(\varkappa - a) + (\xi - \lambda)(\varkappa - a).$

anging the content, translate the submission to any medium or format for the purpose of preservation. The author(s) or covered that UNDIP-IR may keep more than one copy of this submission for purpose of security, back-up and preservation:

(http://eprints.undip.ac.id.)

Bahwa jika $|\xi-\lambda| \leq \min (1,\varepsilon)$ dan $\varkappa \in S + a$ maka

 $\xi \varkappa - \lambda a \in U + U + U \subset V$, yaitu $\xi \varkappa \in W$. (TVS2) terbukti.

DEFINISI 36

Suatu ruang (S, \alpha) disebut Ruang Hausdorff (Hausdorff Space) bila hanya bila setiap dua titik yang berlainan mempunyai dua persekitaran - persekitaran yang saling asing.

TEOREMA 3

E merupakan ruang vektor pada K dan & merupakan koleksi dari himpunan-himpunan bagian balanced, absorbing dari E sedemikian sehingga untuk setiap $V \in \mathcal{S}$ terdapatlah $U \in \mathcal{S}$ sedemikian hingga $U + U \subset V$. Maka terdapatlah Topologi unik pada E dimana E merupakan ruang vektor topologi dan interseksi berhingga dari elemen-elemen dari & membentuk system fundamental dari persekitaran-persekitaran O.

BUKTI:

Himpunan absorbing jelas tidak kosong; dan dari sini V ∈ S memuat O dikarenakan V balanced. Sehingga interseksi berhingga dari elemen-elemen dari S membentuk filter basis R pada E. Jadi R memenuhi kondisi-kondisi dari (NS1) sampai (NS3).

(Dari Teorema 2)

TEOREMA 4

Ruang vektor topologi merupakan ruang Hausdorff jika untuk setiap elemen a $\neq 0$ terdapatlah persekitaran V dari O yang tidak memuat a (a $\not\in$ V)

BUKTI :

Cukup dengan membuktikan bahwa jika a $\neq 0$ maka terdapatlah persekitaran U dari O dan persekitaran W sedemikian hingga U \bigcap W = 0. Jika a \neq b maka a - b = 0.

U merupakan persekitaran dari O dan W dari a - b sedemikian hingga U \bigcap W = ϕ . Maka W + b merupakan persekitaran dari a, U + b merupakan persekitaran dari b, dan(W + b) \bigcap (U + b) = ϕ .

Diberikan a = 0 dan diberikan V merupakan persekitaran dari 0 yang tidak memuat a. terdapatlah persekitaran balanced U dari 0 sedemikian hingga U + U \subset V . Maka U merupakan persekitaran dari 0 dan U + a merupakan persekitaran dari a. Lagipula, U \cap (U + a) = ϕ , sejak $x = y + a \in U$, $y \in U$ berarti $a = x - y \in U + U \subset V$

TEOREMA 5

Dalam ruang vektor topologi setiap persekitaran dari O memuat persekitaran tertutup dari O

BUKTI :

Diberikan V merupakan persekitaran dari O. Terdapatlah persekitaran balanced U dari O sedemikian hingga U + U \subset V. Akan ditunjukkan bahwa $\overline{U} \subset$ V, maka $(\varkappa + U) \bigcap U \neq \phi$ yaitu terdapat $y \in U$ sedemikian hingga $\varkappa + y \in U$ akan tetapi,

$$\varkappa \in -y + U \subset U + U \subset V.$$

TEOREMA 6 (TEOREMA OSGOD)

Diberikan $(U_i)_{i\in I}$ merupakan keluarga fungsifungsi kontinu pada ruang metrik lengkap X. Untuk setiap $\varkappa\in E$, keluarga bilangan-bilangan $(U_1(\varkappa))_{i\in I}$ adalah terbatas. Maka terdapatlah suatu bola $B_{\rho}(z)$ dalam X dan suatu bilangan konstan M > 0 sedemikian hingga $|U_i(\varkappa)\rangle| \leq M$ untuk semua $\varkappa\in B_{\rho}(z)$, $i\in I$.

BUKTI:

Untuk $i \in I$ dan $n \in N$, G_{in} merupakan himpunan dari titik $n \in X$ yang mana $|U_i(n)| \leq n$. Karena U_i adalah kontinu maka himpunan G_{in} adalah tertutup. $F_n = \bigcap_{i \in n} G_{in}$ juga tertutup dan F_n memuat titiktitik $n \in X$ yang mana $|U_i(n)| \leq n$ untuk setiap $i \in I$. Hypotesa bahwa $(n_i(n))_{i \in I}$ adalah terbatas untuk setiap titik berarti $K = \bigcup_{n \in N} F_n$. Maka terdapatlah bola $B\rho(z)$ yang termuat dalam F_n , dimana $|U_i(n)| \leq n$ untuk semua $n \in B\rho(z)$ dan $n \in I$.

is document is Undip Institutional Repository Collection. The author(s) or copyright owner(s) agree that UNDIP-IR may, w anging the content, translate the submission to any medium or format for the purpose of preservation. The author(s) or copyrer(s) also agree that UNDIP-IR may keep more than one copy of this submission for purpose of security, back-up and preservation:

(http://eprints.undip.ac.id)

TEOREMA 7 (TEOREMA BANACH-STEINHANUS)

Diberikan $(U_i)_{i\in I}$ merupakan keluarga dari bentukbentuk linier kontinu pada ruang banach E. Untuk setiap $\varkappa \in E$ keluarga dari skalar-skalar $(U_i(\varkappa))_{i\in I}$ adalah terbatas. Maka terdapat suatu konstanta M>0 sedemikian hingga $|U_i(\varkappa)| \leq M \|\varkappa\|$. Untuk setiap $\varkappa \in E$ dan $i \in I$.

BUKTI:

(Dengan Teorema Osgod) terdapatlah suatu $B_{\rho}(z)$ dalam E dan N > O sedemikian hingga $|U_i(n)| \leq N$ untuk semua $n \in B_{\rho}(z)$ dan $i \in I$.

Jika n sembarang dalam E maka

$$\frac{x}{\parallel x \parallel} \rho + z \in B_{\rho}(z)$$

Dan selanjutnya

$$\left| \begin{array}{c|c} U_{i} \left(\begin{array}{c|c} \frac{n}{n} & \rho + z \end{array} \right) \right| \leq N \qquad , \forall i \in I$$

$$\left| \begin{array}{c|c} U_{i} \left(\begin{array}{c|c} \frac{n}{n} & \rho \end{array} \right) \right| = \left| \begin{array}{c|c} U_{i} \left(\frac{n}{n} & \rho + z - z \right) \right|$$

$$\leq \left| \begin{array}{c|c} U_{i} \left(\frac{n}{n} & \rho + z \right) \right| + \left| \begin{array}{c|c} U_{i}(z) \right|$$

$$\leq 2N$$

dan

$$|U_{i}(\kappa)| \le \frac{2N}{\rho} \| \kappa \|$$
 untuk $\forall \kappa \in E \text{ dan } i \in I$

$$M = \frac{2n}{\rho}$$

his document is Undip Institutional Repository Collection. The author(s) or copyright owner(s) agree that UNDIP-IR may, w hanging the content, translate the submission to any medium or format for the purpose of preservation. The author(s) or copy wner(s) also agree that UNDIP-IR may keep more than one copy of this submission for purpose of security, back-up and preservation: (http://eprints.undip.ac.id)

DEFINISI 37

E merupakan ruang vektor norm atas field K, dan ruang dual dari E dituliskan dengan E merupakan himpunan dari semua bentuk-bentuk linier kontinu pada E sedemikian hingga E merupakan ruang Banach atas field K.

3.2. RUANG KONVEK LOKAL

DEFINISI 38

Himpunan A dalam ruang vektor E adalah konvek, jika untuk $x \in A$, $y \in A$, $0 \le \alpha \le 1$ memenuhi $\alpha x + (1-\alpha)y \in A$

CONTOH 13:

Bola tertutup $B_{\rho}(a)$ dalam ruang vektor norm merupakan himpunan konvek karena untuk $\varkappa \in B_{\rho}(a)$ dan $y \in B_{\rho}(a)$ berarti $\|a-\varkappa\| \le \rho$, $\|a-y\| \le \rho$; diberikan $\beta = 1-\alpha$

sehingga
$$\|\mathbf{a} - \alpha \mathbf{x} - \beta \mathbf{y}\| = \|\alpha(\mathbf{a} - \mathbf{x}) + \beta(\mathbf{a} - \mathbf{y})\|$$

 $\leq \alpha \|\mathbf{a} - \mathbf{x}\| + \beta \|\mathbf{a} - \mathbf{y}\|$
 $\leq \alpha \rho + \beta \rho = \rho$
 $\leq \rho$

jadi $\alpha x + \beta y \in \beta_{O}(a)$

Himpunan A adalah konvek jika untuk $\alpha \ge 0$, $\beta \ge 0$, $\alpha + \beta = 1$ memenuh'i $\alpha A + \beta B \subset A$.

Jika A merupakan konvek dalam E, maka A + a adalah konvek untuk setiap $a \in E$, dan λA adalah konvek untuk setiap $\lambda \subset K$.

Himpunan A balanced dan konvek jika hanya jika untuk setiap $x,y\in A$ dan $\lambda,\mu\in K$ sedemikian hingga $|\lambda|+|\mu|\leq 1$

Diberikan dua ruang vektor E , F dan f merupakan pemetaan linier dari E into F

Jika A konvek dalam E, maka f(A) adalah konvek dalam F.

Jika B konvek dalam F, maka f⁻¹(B) adalah konvek dalam E.

Interseksi dari sembarang keluarga himpunan konvek merupakan himpunan konvek. Diberikan himpunan sembarang B dalam E, maka terdapatlah himpunan konvek paling kecil A yang memuat B, yaitu irisan dari semua himpunan-himpunan konvek yang memuat B. Himpunan A disebut CONVEX HULL dari B.

CONTOH 14:

Bola terbuka $B_{\rho}(a)$ dalam ruang vektor norm merupakan himpunan konvek, karena jika $\kappa \in B_{\rho}(a)$ dan $y \in B_{\rho}(a)$ maka untuk 0 < t < 1 berlaku,

||
$$t \varkappa + (1-t)y-a || = || t(\varkappa-a) + (1-t)9y-a ||$$

 $\leq t || \varkappa-a || + (1-t)|| y-a ||$
 $< t \rho + + (1-t)\rho$

jadi t $\kappa + (1-t)y \in B_{\rho}(a)$

his document is Undip Institutional Repository Collection. The author(s) or copyright owner(s) agree that UNDIP-IR may, with hanging the content, translate the submission to any medium or format for the purpose of preservation. The author(s) or copy with a gree that UNDIP-IR may keep more than one copy of this submission for purpose of security, back-up and preservation:

(http://eprints.undip.ac.id)

DEFINISI 39

Ruang vektor topologi merupakan konvek lokal jika masing-masing titik mempunyai system fundamental persekitaran-persekitaran konvek.

Dengan kata lain ruang vektor topologi merupakan konvek lokal jika O merupakan system fundamental dari persekitaran-persekitaran konvek .

PROPOSISI 1

Dalam ruang konvek lokal persekitaran konvek dari 0 yang balanced dan tertutup, membentuk system fundamental persekitaran-persekitaran dari 0.

BUKTI:

Diberikan W merupakan persekitaran dari 0 dan memuat persekitaran tertutup dari 0 (teorema 5).

Dengan V memuat persekitaran konvek U dari 0 dan U merupakan persekitaran dari 0 yang tertutup, balanced dan konvek yang termuat dalam W.

3 3. HIMPUNAN TERBATAS (BOUNDED SETS)

DEFINISI 40

E Merupakan ruang vektor atas field K dan A,B merupakan himpunan bagian dari E. A <u>absorb</u> B jika terdapat $\alpha > 0$ sedemikian hingga $B \subset \lambda A$ untuk setiap $\lambda \in K$ sedemikian hingga $|\lambda| \geq \alpha$.

 $A\subset E$ absorbing jika A absorbs semua himpunan-himpunan bagian dari E, jika A balanced maka A

absorbs, jika terdapat $\mu \in K$ sedemikian hingga $B \subset \mu A$. Jadi jika ini terpenuhi maka untuk $|\lambda| \geq |\mu|$, $|\lambda^{-1}\mu| \leq 1$ dan selanjutnya $B \subset \mu A = \lambda(\lambda^{-1}\mu)A \subset \lambda A$

DEFINISI 41

Himpunan B dalam ruang vektor topologi adalah terbatas, jika B diabsorb oleh setiap persekitaran dari O.

Untuk ruang vektor topologi E dan F, dan f merupakan pemetaan linier dari E into F maka bayangan (image) onto f dari himpunan terbatas dari E adalah himpunan terbatas di F. Diberikan A merupakan himpunan terbatas di E dan W persekitaran dari O di F, maka f⁻¹(W) adalah persekitaran dari O di E dan absorbs A. Ini menunjukan bahwa W absorbs f(A). Himpunan yang termuat dalam himpunan terbatas jelas terbatas. Gabungan dari dua himpunan terbatas merupakan himpunan terbatas, gabungan berhingga dari himpunan-himpunan terbatas adalah terbatas. Diberikan A dan B merupakan himpunan terbatas.

Untuk persekitaran balanced V dari O terdapatlah $\alpha > 0, \beta > 0$ sedemikian hingga $A \subset \alpha V$ dan $B \subset \beta V$. Diberikan $\gamma = \max(\alpha, \beta)$, kita dapatkan $A \cup B \subset \gamma V$. $\mathfrak B$ merupakan koleksi dari himpunan-himpunan terbatas dari E disebut system fundamental dari himpunan-himpunan terbatas $\mathfrak B$ dari E terdapatlah $\mathfrak F \in \mathfrak B$ sedemikian hingga $\mathfrak B \subset \mathfrak F$.

Dalam ruang konvek lokal, himpunan-himpunan terbatas yang tertutup, konvek, balanced membentuk system fundamental dari himpunan-himpunan terbatas. Untuk memperlihatkan ini diberikan B merupakan himpunan terbatas dan F merupakan interseksi dari semua himpunan konvek, balanced, tertutup yang memuat B, maka F merupakan himpunan konvek, balanced, tertutup yang memuat B (yaitu convex hull dari B, balanced dan tertutup)

Jadi F terbatas.

Dengan proposisi 1 persekitaran-persekitaran konvek dari 0 yang balanced, tertutup membentuk system fundamental persekitaran dari 0, dan jika V merupakan persekitaran dan B $\subset \lambda$ V maka F $\subset \lambda$ V. E merupakan ruang konvek lokal dengan topologi yang dibatasi oleh keluarga semi norm $(q_i)_{i\in I}$ B \subset E adalah terbatas jika hanya jika setiap q terbatas di B.

Diberikan ruang vektor E dan semi norm q pada E.

q membatasi topologi konvek lokal di E dan pada topologi ini E mempunyai system fundamental dari persekitaran terbatas dari O yang dibentuk oleh himpunan

$$\nabla_{\varepsilon} = \{ \varkappa \mid q(\varkappa) \le \varepsilon \}$$

DEFINISI 42

Diberikan E merupakan ruang vektor topologi dan A himpunan bagian dari E. Filter ♂ di A merupakan filter Cauchy, jika untuk setiap persekitaran V dari O di E terdapatlah himpunan X ∈ ♂ sedemikian

hingga $X-X \subset V$; berarti bahwa, $\varkappa-y \in V$ untuk setiap $\varkappa,y \in X$.

Himpunan bagian A dari ruang vektor topologi adalah <u>lengkap</u> jika setiap filter Cauchy P konvergen ke titik dari A.

Ruang vektor topologi adalah <u>Quasi-lengkap</u>, jika setiap himpunan bagian tertutup adalah lengkap.

