BAB V

KESTMPULAN

Dari pembahasan masalah pada bab III dan IV akhirnya dapat ditarik kesimpulan sebagi berikut:

- $1.B \geq A \Rightarrow G_A$ adalah suatu bayangan homomorfis dari suatu subsemigroup pada G_B .
- 2. Suatu Semiautomata A dapat dibentuk Semiautomata baru A^{*} sedemikian sehingga $A^{*} \ge A$ dimana:

$$\begin{split} \mathbf{B} &= \mathbf{A}/\Pi \\ \mathbf{\Sigma}^{\mathbf{A}^{\pm}} &= \mathbf{\Sigma}^{\mathbf{A}} = \mathbf{\Sigma}^{\mathbf{B}} \\ \mathbf{S}^{\mathbf{A}^{\pm}} &= \{ (\mathbf{s}^{\mathbf{A}}, \overline{\mathbf{H}}_{i}) \}, \mathbf{s}^{\mathbf{A}} \in \mathbf{S}^{\mathbf{A}} \text{ dan } \mathbf{s}^{\mathbf{A}} \in \mathbf{H}_{i} \in \Pi \\ \mathbf{\sigma}^{\mathbf{A}^{\pm}} (\mathbf{s}^{\mathbf{A}}, \overline{\mathbf{H}}_{i}) &= (\mathbf{\sigma}^{\mathbf{A}}, \mathbf{s}^{\mathbf{A}}, \mathbf{\sigma}^{\mathbf{B}}, \overline{\mathbf{H}}_{i}) \text{ untuk setiap} \\ \mathbf{\sigma} \in \mathbf{\Sigma}^{\mathbf{A}}. \end{split}$$

3. Produk langsung dari Π -faktor dan τ -faktor dari semiautomata C akan mengcover C bila Π dan τ adalah dua partisi admissibel pada S^c dalam semiautomata C dan irisan dari Π dan τ adalah identitas.