Comula		Amplified DNA			Unamplified DNA	
Sampre	Total CNV	Duplication	Deletion	Total CNV	Duplication	Deletion
1	511	260	251	53	14	39
2	431	189	242	391	156	235
3	170	80	06	301	107	194
4	128	33	95	49	26	23
5	718	407	311	121	69	52
6	42	12	30	23	9	17
10	1008	707	301	27	14	13
11	204	89	115	123	62	44
12	215	31	184	33	18	15
13	235	52	183	301	103	198
16	844	173	671	31	20	11
17	205	29	176	21	1	20

Supplemental1.Total number of CNVs of Unamplified VS Amplified DNA

SUPPLEMENTAL

					Unampli	Unamplified DNA Materials		
Sample	Gender	Age of Onset	total # CNVs	Duplication [total]	Deletion [total]	total # CNVs on miRs	Duplication [miR]	Deletion [miR]
1	F	26	23	14	39	2	2	0
2	Н	29	391	156	235	48	17	31 - 1 Complex
б	Н	31	301	107	194	24	13	11
4	F	32	49	26	23	7	9	1
5	Н	33	121	69	52	12	11	1
9	Ч	34	29	21	8	ю	2	1
L	Н	34	100	41	59	11	10	1
8	Р	36	60	30	30	9	9	0
6	Μ	23	23	9	17	2	1	1
10	Μ	26	27	14	13	8	2	6
11	Μ	32	123	79	44	11	ю	8
12	Μ	33	33	18	15	5	2	ω
13	Μ	33	301	103	198	25	9	19
14	Μ	34	6	4	5	2	2	0
15	Μ	35	89	36	53	7	7	0
16	Μ	39	31	20	11	Ś	С	2
17	Μ	39	21	1	20	2	0	2

Supplemental 2. Table of patients' information with the corresponding CNVs found in general and affecting miRs

ઝ		R			R								R			. 4	R	г	1		R	R	. 4		
Validation &	Method	No - q-PCR			No - q-PCR	l							No - q-PCR			No - PCR	No - q-PC	No - PCR/	PCR		No - q-PCR	Yes - qPC	No - PCR		
CNV	Length	541	463	481	641	1967		51	921	461	391	711	4,236		861	3118	321		1741	1176	531	1178	6912		4041
Probe	Value	-0.30	-0.30	-0.26	-0.23	-0.28		-3.45	-0.40	- 0.48	-0.34	-0.27	- 2.49		-0.21	-0.29	-0.28		-0.22	-0.29	-0.29	-0.35	-0.29	900	-0.40
	miRNAs	hsa-mir-191	hsa-mir-340	hsa-mir-671	hsa-mir-320a	hsa-mir-219-2		hsa-mir-202	hsa-mir-762	hsa-mir-636	hsa-mir-338	hsa-mir-644	hsa-mir-124-3	hsa-mir-301b,	hsa-mir-130b	hsa-mir-652	hsa-mir-128-1		hsa-mir-30b	hsa-mir-759	hsa-mir-557	hsa-mir-770	hsa-mir-493	hsa-mir-432, heo mir-126	061-1111-6811
	Event	CN Loss	Homozygous Copy	Loss	CN Loss		CN Loss	CN Loss	CN Loss		CN Loss	CN Loss	CN Loss	CN Loss	CN Loss		CIN LOSS								
End	Position	49,033,520	179,375,456	150,566,735	22,158,845	130,196,189		134,911,111	30,813,181	72,244,552	76,714,516	32,517,876	61,280,958		20,337,698	109, 188, 285	136,139,542		135,883,060	52,283,450	166,611,691	100, 389, 552	100,409,513	100 100 016	100,422,240
Start	Position	49,032,980	179,374,994	150,566,255	22,158,205	130,194,223		134,911,061	30,812,261	72,244,092	76,714,126	32,517,166	61,276,722		20,336,838	109,185,168	136,139,222		135,881,320	52,282,275	166,611,161	100, 388, 375	100,402,602	100 000 000	100,420,202
Chr.	No	3	S	7	8	6		10	16	17	17	20	20		22	X	0		8	13	1	14	14	7	- +
	Sample	2	0	7	0	2		0	0	0	0	0	0		0	0	m		S	ŝ	11	11	11	11	11

Supplemental 3.List of unique deletion of CNV (affecting miR)

No - qPCR/PCR	A		No - PCR	
1357	401	161	548	481
-0.28	-0.23	-0.53	-0.31	-0.29
hsa-mir-142	hsa-mir-553	hsa-mir-3154	hsa-mir-34c	hsa-mir-615
CN Loss	CN Loss	CN Loss	CN Loss	CN Loss
53,764,453	100,519,780	130,047,226	110,889,975	52,714,286
53,763,097	100,519,380	130,047,066	110,889,428	52,713,806
17	Η	6	11	12
11	13	13	13	13

Sample	Chr. No	Start Position	End Position	Event	miRNAs	Probe Value	CNV Length	Validation & Method
10	2	219,574,366	219,574,366 219,574,676	CN Loss	hsa-mir-375	- 0.38	310	
0	0	219,574,416	219,574,696	CN Loss	hsa-mir-375	-2.88	280	
		N.						No -qPCR&
10	2	219,574,636	219,574,676	Homozygous Copy Loss	hsa-mir-375	-1.51	41	PCR
								No -qPCR&
0	0	219,574,636	219,574,696	Homozygous Copy Loss	hsa-mir-375	-2.88	61	PCR
5	6	72,614,326	72,614,896	CN Loss	hsa-mir-204	- 0.30	571	No -qPCR
4	6	72,614,396	72,614,876	CN Loss	hsa-mir-204	- 0.30	481	No -qPCR
11	6	72,614,436	72,615,176	CN Loss	hsa-mir-204	-0.48	741	No -qPCR
6	6	72,614,456	72,615,096	CN Loss	hsa-mir-204	-0.22	641	No -qPCR
7	12	96,480,421	96,482,006	CN Loss	hsa-mir-135a-2	-0.24	1586	No -PCR
ω	12	96,481,326	96,482,116	CN Loss	hsa-mir-135a-2	-0.30	791	No -PCR
0	14	103,652,470	103,653,860	CN Loss	hsa-mir-203	-0.55	1391	No -qPCR
13	14	103,652,945	103,653,520	CN Loss	hsa-mir-203	-0.46	576	No -qPCR
0	15	39,770,870	39,771,943	CN Loss	hsa-mir-626	-0.28	1074	
13	15	39,771,060	39,771,530	CN Loss	hsa-mir-626	-0.28	471	
ω	15	39,771,080	39,771,621	CN Loss	hsa-mir-626	-0.28	542	
0	19	14,501,320	14,501,380	Homozygous Copy Loss	hsa-mir-639	- 2.13	61	
13	19	14,501,340	14,501,390	Homozygous Copy Loss	hsa-mir-639	-2.78	51	
13	22	18,400,557	18,400,667	CN Loss	hsa-mir-185	-0.53	111	
c	\mathcal{C}	18 100 557	18 400 667	CNIDee	hsa-mir-185	-0.58	111	

Supplemental 4.List of recurrent deletion of CNV (affecting miR)

	Chr.	Start	End			Probe	CNV
Sample	No	Position	Position	Event	miRNAs	Value	Length
2	1	206,041,755	206,042,425	CN Gain	hsa-mir-29c, hsa-mir-29b-2	0.26	671
7	9	126,847,535	126,847,865	CN Gain	hsa-mir-588	0.32	331
0	12	56,500,684	56,504,994	CN Gain	hsa-mir-26a-2	0.26	4311
					hsa-mir-380, hsa-mir-1197, hsa-mir-411,		
0	14	100,558,971	100,562,201	CN Gain	hsa-mir-758, hsa-mir-323, hsa-mir-299	0.23	3231
0	16	55,449,846	55,450,356	CN Gain	hsa-mir-138-2	0.41	511
0	17	25,467,808	25,468,468	CN Gain	hsa-mir-423	0.33	661
0	X	146,088,097	146,088,437	CN Gain	hsa-mir-513b	0.30	341
ς	4	8,058,003	8,063,333	CN Gain	hsa-mir-95	0.22	5331
n	14	99,644,821	99,645,900	CN Gain	hsa-mir-342	0.29	1080
ς	X	133,507,599	133,508,229	CN Gain	hsa-mir-503	0.25	631
ŝ	X	146,168,452	146, 168, 962	CN Gain	hsa-mir-514-1	0.26	511
5	ω	37,985,954	37,987,500	CN Gain	hsa-mir-26a-1	0.29	1547
5	11	548.089	558.204	CN Gain	hsa-mir-210	0.23	10116
5	19	56,888,322	56,891,079	CN Gain	hsa-mir-125a	0.31	2758
٢	16	33,868,749	33,873,931	CN Gain	hsa-mir-1826	0.33	5183
7	20	62,043,153	62,044,223	CN Gain	hsa-mir-1914	0.46	1071
8	17	6,862,043	6,871,965	CN Gain	hsa-mir-497	0.21	9923
8	19	3,912,227	3,912,527	CN Gain	hsa-mir-637	0.52	301

Supplemental 5 List of unique duplication CNV (affecting miR)

CNV	Length	571	632	5831	5461	4231	3,510	13,319	3,510	940	800	490	490	740	470	460	2226	1826	1876	1976	15098	5903	1553	1353
	Probe Value	0.26	0.22	0.39	0.27	0.29	0.96	0.25	1.00	0.41	0.24	0.38	0.35	0.39	0.35	0.32	0.51	0.39	0.31	0.43	0.29	0.33	0.26	0.40
	miRNAs	hsa-mir-137	hsa-mir-137	hsa-mir-663b	hsa-mir-663b	hsa-mir-663b	hsa-mir-663b	hsa-mir-663b	hsa-mir-663b	hsa-mir-153-1	hsa-mir-1974	hsa-mir-1974	hsa-mir-1974	hsa-mir-1974	hsa-mir-675	hsa-mir-675	hsa-mir-675	hsa-mir-675						
	Event	CN Gain	CN Gain	CN Gain	CN Gain	CN Gain	CN Gain	CN Gain	CN Gain	CN Gain	CN Gain	CN Gain	CN Gain	CN Gain	CN Gain	CN Gain	CN Gain	CN Gain	CN Gain	CN Gain	CN Gain	CN Gain	CN Gain	CN Gain
	End Position	98,284,769	98,284,840	132,732,276	132,732,156	132,732,176	132,732,156	132,741,965	132,732,206	219,867,691	219,867,791	219,867,621	219,867,621	219,867,891	219,867,621	219,867,621	93,932,455	93,932,055	93,932,105	93,932,205	1,979,662	1,980,312	1,975,962	1,975,962
Start	Position	98,284,199	98,284,209	132,726,446	132,726,696	132,727,946	132,728,646	132,728,646	132,728,696	219,866,752	219,866,992	219,867,132	219,867,132	219,867,152	219,867,152	219,867,162	93,930,230	93,930,230	93,930,230	93,930,230	1,964,565	1,974,410	1,974,410	1,974,610
	Chr. No	1	1	7	7	7	0	0	0	0	0	7	7	7	7	0	5	5	5	5	11	11	11	11
	Sample	3	0	7	0	ŝ	5	16	4	5	1	10	11	7	8	6	4	8	11	14	5	m	12	Г

Supplemental 6.List of recurrent duplication CNV (affecting miR)

1291 621 1091 876 1156 11158 6141 631 651 651 651 651 651 651 1,870 1611 1611 1641 331 391 391 391 331 331 331 331 331 33	
$\begin{array}{c} 0.29\\ 0.26\\ 0.26\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.28\\$	
hsa-mir-492 hsa-mir-492 hsa-mir-622 hsa-mir-622 hsa-mir-622 hsa-mir-622 hsa-mir-324 hsa-mir-769 hsa-mir-769 hsa-mir-769 hsa-mir-769 hsa-mir-769 hsa-mir-663 hsa-mir-220a hsa-mir-220a	
CN Gain CN CN CN Gain CN CN C	
93,752,720 93,752,740 89,681,902 89,681,902 89,682,157 7,068,497 7,068,497 7,067,755 7,073,497 51,214,425 51,214,425 51,214,415 51,214,415 51,214,415 51,214,415 51,214,415 51,214,415 51,214,415 51,214,415 26,137,167 26,137,167 26,137,107 26,137,117 26,137,107 27,25,25,361	
93,751,430 93,752,120 89,680,812 89,680,887 89,680,952 89,680,952 89,681,102 7,057,340 7,061,615 7,066,015 51,213,795 51,213,795 51,213,795 51,213,795 51,213,795 51,213,795 51,213,795 51,213,795 51,213,795 51,213,795 26,136,617 26,136,617 26,136,627 26,136,627 26,136,727 26,233,162	
X X X 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
A ご	

	Chr.	Start				Prohe	CNV
Sample	No	Position	End Position	Event	miRNAs	Value	Length
2	1	153,431,537	153,431,607	Homozygous Copy Loss	hsa-mir-92b	-2.14	71
13	Η	153,431,537	153, 431, 607	Homozygous Copy Loss	hsa-mir-92b	-2.26	71
5	Η	153,431,567	153,432,057	CN Gain	hsa-mir-92b	0.42	491
8	μ	153,431,617	153,441,587	CN Gain	hsa-mir-92b	0.23	9971
0	0	241,043,266	241,044,246	CN Loss	hsa-mir-149	-2.22	980
15	6	241,044,166	241,044,246	High Copy Gain	hsa-mir-149	2.04	81
0	0	241,044,176	241,044,246	Homozygous Copy Loss	hsa-mir-149	-2.22	71
13	0	241,044,176	241,044,246	Homozygous Copy Loss	hsa-mir-149	-2.29	71
6	ω	196,909,527	196,918,180	CN Gain	hsa-mir-570	0.37	8654
ς	ω	196,909,777	196,911,657	CN Loss	hsa-mir-570	-0.29	1881
7	4	10,979,244	10,979,834	CN Gain	hsa-mir-572	0.29	591
15	4	10,979,454	10,979,584	High Copy Gain	hsa-mir-572	2.05	131
7	4	10,979,464	10,979,584	Homozygous Copy Loss	hsa-mir-572	-1.58	121
4	4	10,979,464	10,979,584	High Copy Gain	hsa-mir-572	0.90	121
13	4	10,979,464	10,979,584	Homozygous Copy Loss	hsa-mir-572	-1.57	121
11	L	30, 292, 110	30,295,970	CN Gain	hsa-mir-550-1	0.28	3861
S	٢	30,294,610	30,296,050	CN Loss	hsa-mir-550-1	-0.26	1441
7	17	1,898,577	1,901,799	CN Loss Complex	hsa-mir-132 & hsa-mir-212	0.21	3222
9	17	1,899,897	1,900,317	CN Loss	hsa-mir-212, hsa-mir-132	- 0.61	421
14	17	1,899,897	1,900,357	CN Gain	hsa-mir-212, hsa-mir-132	0.40	461
15	17	1,899,897	1,900,357	High Copy Gain	hsa-mir-212, hsa-mir-132	1.88	461
13	17	1,899,907	1,900,317	Homozygous Copy Loss	hsa-mir-212, hsa-mir-132	-2.03	411
13	17	1,899,907	1,901,049	CN Loss	hsa-mir-212, hsa-mir-132	-0.32	1,142

Supplemental 7.List of recurrent duplication and deletion CNV (affecting miR)

60	111 91	10308	101	350	101	81	370	91	111	1530	81	270	81	81	81	240	161	81	71	61	160	61	10820	481	826	876
	-3.21 -1.75	0.28	-1.67	- 0.62	-1.67	-1.11	-0.28	-2.49	-2.06	0.25	-2.69	-0.37	0.94	-1.37	-2.65	-0.47	2.10	-1.53	-1.07	-1.79	-0.30	- 2.86	0.50	-0.32	0.62	0.34
	hsa-mir-132 hsa-mir-132	hsa-mir-212, hsa-mir-132	hsa-mir-132	hsa-mir-132 & hsa-mir-212	hsa-mir-132	hsa-mir-132	hsa-mir-132 & hsa-mir-212	hsa-mir-132	hsa-mir-212	hsa-mir-638	hsa-mir-638	hsa-mir-638	hsa-mir-638	hsa-mir-638	hsa-mir-638	hsa-mir-638	hsa-mir-638	hsa-mir-638	hsa-mir-638	hsa-mir-638	hsa-mir-638	hsa-mir-638	hsa-mir-650	hsa-mir-650	hsa-mir-650	hsa-mir-650
	Homozygous Copy Loss Homozygous Copy Loss	CN Gain	Homozygous Copy Loss	CN Loss	Homozygous Copy Loss	Homozygous Copy Loss	CN Loss	Homozygous Copy Loss	Homozygous Copy Loss	CN Gain	Homozygous Copy Loss	CN Loss	High Copy Gain	Homozygous Copy Loss	Homozygous Copy Loss	CN Loss	High Copy Gain	Homozygous Copy Loss	Homozygous Copy Loss	Homozygous Copy Loss	CN Loss	Homozygous Copy Loss	CN Gain	CN Loss	High Copy Gain	CN Gain
	1,900,117 1,900,107	1,910,324	1,900,117	1,900,367	1,900,117	1,900,107	1,900,397	1,900,117	1,900,317	10,691,154	10,690,125	10,690,315	10,690,125	10,690,125	10,690,125	10,690,285	10,690,205	10,690,125	10,690,125	10,690,125	10,690,225	10,690,125	21,496,090	21,495,725	21,496,090	21,496,140
	1,900,007 1,900,017	1,900,017	1,900,017	1,900,017	1,900,017	1,900,027	1,900,027	1,900,027	1,900,207	10,689,625	10,690,045	10,690,045	10,690,045	10,690,045	10,690,045	10,690,045	10,690,045	10,690,045	10,690,055	10,690,065	10,690,065	10,690,065	21,485,270	21,495,245	21,495,265	21,495,265
	17 17	17	17	17	17	17	17	17	17	19	19	19	19	19	19	19	19	19	19	19	19	19	22	22	22	22
	0 m	٢	10	10	16	12	12	17	0	S	0	0	4	10	13	13	15	16	12	ω	ω	17	7	11	0	13

61	1066 700	08/	81 81	71	81		7512		9192	4691	3562	1742	2382	640	009	401	131	350
	0.32	-2.60	-2.00 -1.27	- 2.53	2.02		0.26		0.27	-0.44	0.21	0.29	-0.44	-1.27	-1.31	- 0.30	2.12	1.35
	hsa-mir-650	hsa-mir-658	hsa-mir-658	hsa-mir-658	hsa-mir-658	hsa-mir-514-3, hsa-mir-514-2, hsa-	mir-514-1	hsa-mir-514-3, hsa-mir-514-2, hsa-	mir-514-1	hsa-mir-514-2	hsa-mir-514-3	hsa-mir-514-3	hsa-mir-514-3	hsa-mir-718	hsa-mir-718	hsa-mir-718	hsa-mir-718	hsa-mir-718
	CN Gain	UN LOSS	Homozygous Copy Loss	Homozygous Copy Loss	High Copy Gain		CN Gain		CN Gain	CN Loss	CN Gain	CN Gain	CN Loss	CN Loss	CN Loss	CN Loss	High Copy Gain	CN Gain
	21,496,340	36,570,330	36,570,330	36,570,320	36,570,330		146,175,963		146,177,663	146,173,612	146,176,313	146,175,663	146,176,313	152,938,810	152,938,810	152,938,830	152,938,590	152,938,810
	21,495,275	36,569,550 26,570,250	36,570,250	36,570,250	36,570,250		146,168,452		146,168,472	146, 168, 922	146,172,752	146,173,922	146,173,932	152,938,170	152,938,210	152,938,430	152,938,460	152,938,460
	22	52	57 77	22	22		Х		Х	Х	Х	Х	Х	Х	Х	X	Х	Х

 12
 13
 13
 14
 8
 15
 13

 15
 13
 13
 13
 13
 13
 13
 14

 15
 13
 13
 13
 13
 13
 14
 15
 15
 15

 15
 13
 13
 13
 13
 13
 14
 15
 15
 16
 16
 17
 16
 17
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 <

CURRICULUM VITAE

Personal Details:

Name: Current address: Telephone: Email-address: Date & place of birth: Nationality:	Avanita S Prabowo Jl. Buring No.30 Malang, East Java, Indonesia 65111 +62 8180 3816 999 (mobile) pavanitas@yahoo.com 3 August 1985, Pasuruan, Indonesia Indonesian
Education:	
2009-2011	University of Diponegoro, Semarang, Indonesia (Graduated in: Master of Medical Science majoring in Genetic Counseling)
2008-2011	<i>University of Brawijaya</i> , Malang, Indonesia (Graduated <i>cum laude</i> in: Master of Health Science majoring in Microbiology)
2003-2007	<i>The University of Adelaide</i> , Adelaide, Australia (Graduated: BSc in Biomedical Science)
1999-2002	Sacre Coeur, Glen Iris, Victoria, Australia (Graduated: Senior High School)
Research Experience:	
2010-2011 (6 months)	Biomedical Research Center, University of Brawijaya Malang, East Java, Indonesia; Department of Medicine MSc Internship
	Duties included:- SDS-PAGE- Protein isolation- Electro-Elution- Bacteria culture- Hemagglutination Assay (HA)- Adhesion test- Enterocytes preparation- Pili cutter- Animal handling (mice)- Polyclonal antibodies production- Western Blot
2009-2010 (11 months)	 Radboud University Nijmegen Medical Centre (RUNMC) Nijmegen, The Netherlands; Department of Human Genetics MSc Internship <u>Duties included:</u> Micro-RNA microarray Bioinformatics (Data mining, gene annotation) PCR Q-PCR DNA extraction

2005-2007 (20 months)

Royal Adelaide Hospital Adelaide, SA, Australia; Department of Medicine BSc & Honours Internship

Duties included:

- DNA extraction
- Microarray
- Immunohistochemistry
- Histological staining
- Apoptosis measurements
- Microscopy
- Microdissection
- Bioinformatics (data mining, pathway generation)
- Animal handling (rats)
- TUNEL assay

Awards:

2008-2010 The Excellence Scholarship Program for national and international level Awarded through the Indonesian Ministry of National Education http://beasiswaunggulan.depdiknas.go.id/index_en.php

Scientific output:

Publication

-*Prabowo AS*, Suyuti H, Sumarno. Partial characterization of adhesins pili on *Shigella dysenteriae*. Jurnal Kedokteran Brawijaya 2011. (*Accepted*)

-Bowen JM, Gibson RJ, Stringer AM, Chan TW, <u>*Prabowo AS*</u>, Cummins AG, Keefe DMK. Role of p53 in irinotecan-induced intestinal cell death and mucosal damage. *Anti-Cancer Drugs* 2007, 18: 197-210

Abstracts (Oral Presentations)

-Characterization of adhesins pili proteins on Shigella dysenteriae as a potential vaccine candidate. <u>Avanita Prabowo</u>, Hidayat Suyuti, Wahyudha N Lady, Ali Sabet, Sumarno The Australian Society for Microbiology, Annual Scientific Meeting, July 4th-8th, 2011 Hobart, Tasmania, Australia.

-Protein pili of 37,8 kDa V.Cholerae Coupled With Cholera Toxin Subunit B V.Cholerae Protect The Intestinal Mice From Efflux Of Water.

Gatoet Ismanoe, Wienarsih, Tri Yudani, <u>Avanita Prabowo</u>, Sumarno The Australian Society for Microbiology Annual Scientific Meeting, July 4th-8th, 2011 Hobart, Tasmania, Australia.

-MicroRNA copy number abnormalities in familial colorectal cancer.

<u>Avanita Prabowo</u>, Ramprasath Venkatachalam, Eveline Kamping, Marjolijn J Ligtenberg, Nicoline Hoogerbrugge, Ad GeurtsVanKessel, Roland P Kuiper. 12th European Workshop on Cytogenetics and Molecular Genetics of Solid Tumours, June 3rd-6th, 2010 Nijmegen, The Netherlands. (Nominated for best presentation).

Published in Cancer Genetics and Cytogenetics Vol.203, 1: 47.

-Gene Expression And Pathway Activation In the Jejunum Following 5-Fu Treatment; Comparison with Irinotecan.

Joanne Bowen, <u>Avanita Prabowo</u>, Andrea Stringer, Richard Logan, Rachel Gibson, Dorothy Keefe International MASCC/ISOO Symposium, june 26th-28th, 2008 Houston, Texas, USA. Published in Supportive Care in Cancer Vol.16, 6: 619-756

Posters

-Sumbawa fermented horse milk as immunostimulants for 37.8 kDa V.Cholerae vaccine.

Faisal, <u>Avanita Prabowo</u>, Kusworini Handono, Wahyudha N Lady, Ali Sabet, Sumarno The Australian Society for Microbiology, Annual Scientific Meeting, July 4th-8th, 2011 Hobart, Tasmania, Australia.

-Detection of molecule adhesion pili 48 kDa of Salmonella typhi by immunochemistry using sera patients suffering from typhoid fever.

Samsul Islam, Uun Yanuhar, Sanarto Santoso, Sri Winarsih, <u>Avanita Prabowo</u>, Sumarno The Australian Society for Microbiology, Annual Scientific Meeting, July 4th-8th, 2011 Hobart, Tasmania, Australia.

Interest and Abilities:

Interests:	Computers, sports (martial arts, tennis, table tennis, rafting, diving, badminton, softball, soccer), arts, music, travelling and cultures.
Languages:	Indonesian (Native speaker), English (fluent), Javanese (fluent)
Computer applications:	Windows 98/XP/Vista, Office (Access, Excel, Word, Power Point), Open-Office, Photoshop, Vector NTI

PUBLICATION

Abstracts / Cancer Genetics and Cytogenetics 203 (2010) 44-65

MICRO-RNA COPY NUMBER ABNORMALITIES IN FAMILIAL COLORECTAL CANCER

Avanita S. Prabowo¹, Ramprasath Venkatachalam¹, Eveline Kamping¹, Marjolijn J. Ligtenberg^{1,2}, Nicoline Hoogerbrugge¹, Ad Geurts van Kessel¹, Roland P. Kuiper¹

- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
- Department of Pathology, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands

The majority of the familial colorectal cancer (CRC) cases cannot be explained by known gene defects, suggesting the existence of other genetic risk factors. In an approach to identify such risk factors, we recently performed a screen for copy number variations (CNVs) in high-risk CRC patients and found, among other lesions, several small deletions affecting microRNA genes. Micro-RNAs are negative regulators of approximately 30% of the genes in the human genome, including numerous tumor suppressor genes and oncogenes. In order to comprehensively investigate copy number variation in microRNA genes, and to reveal whether such variations may affect CRC predisposition, we screened for CNVs of microRNA genes in 52 unexplained familial early-onset CRC patients using a custom-made ultimate (tiling) resolution oligo array containing 695 miR genes. We found various small (0.1-5 kb) constitutional deletions and duplications affecting single microRNA genes. Several of these (PCR-validated) CNVs could be detected also in normal controls, whereas others appeared to be rare and were thus far only found in CRC patients. We conclude that CNVs in microRNA genes are more common than previously thought, and that some of them may be associated with CRC predisposition.

NOVEL TRANSLOCATION VARIANT IN EWING SARCOMA INVOLVING THE NFATC2 GENE

Karoly Szuhai¹, Danielle de Jong¹, Hans Tanke¹, Pancras Hogendoorn²

- Department of Molecular Cell Biology, Leiden University Medical Center, The Netherlands
- Department of Pathology, Leiden University Medical Center, The Netherlands

Ewing sarcoma (ES) is an aggressive sarcoma, and is the second most common bone sarcoma in childhood. Disease-specific t(11:22) (~85-90%), t(21:22) (~5-10%), or rarer variant translocations with the involvement of chromosome 22 (~5%) are present. These translocations result in chimeric genes formed between the EWSR1 gene and a member of the ETS transcription factor family, such as FLI1, ERG. So far, no ES has been identified with a fusion to transcription factors other than ETS. This specificity is important in diagnosing ES. By using a panel of molecular tools such as multicolour FISH and array-CGH, a ring chromosome containing chromosomes 20 and 22 was identified in two index cases with ES-like histological appearance. Molecular karyotyping showed translocation and amplification of regions of chromosomes 20q13 and 22q12. Cloning of the breakpoint showed an in-frame fusion between the EWSR1 and NFATc2 genes. The translocation led to the loss of the N-terminal, calcineurin-dependent control region. Consequently, the remaining intact DNA binding domain of NFATc2 is under control of the EWSR1 promoter region permitting oncogenic activation. Intriguingly, in all cases a distinct histological feature was observed. We conclude that a new translocation involving EWS and NFATc2 has been cloned that is associated with a histological variant of ES. The NFATc2 transcription factor is not a member of the ETS family of transcription factors. NFTAC2 has well-characterized functions in T-cell differentiation and immune response. For the first time a direct involvement of NFATc2 in oncogenesis has been shown. The importance and impact of this finding on molecular diagnosis of small round cell tumors will be discussed.