BAB III

PENYANDIAN DAN PENGURAIAN SANDI GRUP

Pandang suatu rangkaian angka 0 dan atau 1, misal (0001 01) sebanyak k digit. Kemudian pandang (0,0,0,1, 0,1) sebanyak k digit, adalah elemen dari hasil kali grup $Z_2 \times Z_2 \times \times Z_2$ sebanyak k faktor yang notasinya ditulis Z_2^k. Sehingga rangkaian angka 0 dan atau 1 sebanyak k digit dapat dipandang sebagai elemen dari grup Z_2^k yang ditulis tanpa koma.

Grup Z_2^k mempunyai order 2^k, abelian dan setiap elemen x dalam Z_2^k yang tidak sama dengan 0 mempunyai order 2. Sebagai konsekwensi dari sifat tersebut diatas maka setiap x dalam Z_2^k yang tidak sama dengan 0 adalah invers dari dirinya sendiri; yaitu $x = -x$.

3.1. PENGERTIAN PENYANDIAN

Definisi 3.1.1

Misal n dan k bilangan bulat positip dengan $k < n$

Pasangan sandi adalah fungsi $\phi : Z_2^k \rightarrow Z_2^n$ yang satu - satu.

Untuk teks biasa X dalam Z_2^k, $Y = \phi(X)$ dalam Z_2^n adalah teks sandi untuk teks biasa X atau teks sandi yang berhubungan dengan teks biasa X.

Contoh :

Diberikan,

$Z_2^3 = \{ (000), (001), (010), (011), (100), (101), (110), (111) \}$

$Z_2^4 = \{ (0000), (0001), (0010), (0011), (0100), (0101), (0110), (0111), (1000), (1001), (1010), (1011), (1100), (1101), (1110), (1111) \}$
\[(1011), (1101), (1110), (1111)\].

Didefinisikan fungsi \(\phi : \mathbb{Z}_2^3 \rightarrow \mathbb{Z}_2^4\) dengan,
\(\phi((a_1 a_2 a_3)) = (1a_1 a_2 a_3)\), sehingga diperoleh:
\(\phi((000)) = (1000)\)
\(\phi((001)) = (1001)\)
\(\phi((010)) = (1010)\)
\(\phi((100)) = (1100)\)
\(\phi((011)) = (1011)\)
\(\phi((101)) = (1101)\)
\(\phi((110)) = (1110)\)
\(\phi((111)) = (1111)\).

Maka \(\phi : \mathbb{Z}_2^3 \rightarrow \mathbb{Z}_2^4\) merupakan pasangan sandi sebab \(\phi : \mathbb{Z}_2^3 \rightarrow \mathbb{Z}_2^4\) adalah satu - satu, yaitu untuk sembarang \(x_1, x_2\) dalam \(\mathbb{Z}_2^3\), dimana jika \(x_1 \neq x_2\) maka \(\phi(x_1) \neq \phi(x_2)\).

Jadi,

teks sandi untuk teks biasa (000) adalah (1000)
teks sandi untuk teks biasa (001) adalah (1001)
dan seterusnya.

3.2. PENGERTIAN SANDI GRUP

Definisi 3.2.1.
Pasangan sandi \(\phi : \mathbb{Z}_2^k \rightarrow \mathbb{Z}_2^n\) disebut sandi Grup jika Image dari \(\phi\) adalah subgrup dari \(\mathbb{Z}_2^n\).

Contoh:
1. Diberikan,
\(\mathbb{Z}_2^3 = \{(000), (001), (010), (100), (011), (101), (110), (111)\}\).
\(\mathbb{Z}_2^4 = \{(0000), (0001), (0010), (0100), (0101), (0110), (1000), (1001), (1010), (1100), (1101), (1110), (1111)\}\).
(1011), (1101), (1110), (1111)

Didefinisikan fungsi \(\varnothing : \mathbb{Z}_2^3 \rightarrow \mathbb{Z}_2^4 \) sebagai berikut,

- \((000) \rightarrow \varnothing((000)) = (0000)\)
- \((001) \rightarrow \varnothing((001)) = (0011)\)
- \((010) \rightarrow \varnothing((010)) = (0101)\)
- \((100) \rightarrow \varnothing((100)) = (1001)\)
- \((011) \rightarrow \varnothing((011)) = (0110)\)
- \((101) \rightarrow \varnothing((101)) = (1010)\)
- \((110) \rightarrow \varnothing((110)) = (1100)\)
- \((111) \rightarrow \varnothing((111)) = (1111)\).

Maka \(\varnothing : \mathbb{Z}_2^3 \rightarrow \mathbb{Z}_2^4 \) merupakan sandi Grup, sebab

- \(\varnothing : \mathbb{Z}_2^3 \rightarrow \mathbb{Z}_2^4 \) jelas pasangan sandi.
- Misal \(K = \text{Im}(\varnothing) \) maka \(K \) terdiri dari

\[
\begin{array}{c|c|c|c|c|c|c|c|c}
+ & a & b & c & d_1 & e & f & g & h \\
\hline
!a! & a! & b! & c! & d! & e! & f! & g! & h! \\
!b! & b! & a! & e! & f! & c! & d! & h! & g! \\
!c! & c! & e! & a! & g! & b! & h! & d! & f! \\
!d! & d! & f! & g! & a! & h! & b! & c! & e! \\
!e! & e! & c! & b! & h! & a! & g! & f! & d! \\
!f! & f! & d! & h! & b! & g! & a! & e! & c! \\
!g! & g! & h! & d! & c! & f! & e! & a! & b! \\
!h! & h! & g! & f! & e! & d! & c! & b! & a! \\
\end{array}
\]

- dengan memperhatikan tiap-tiap baris dan
tiap - tiap kolom terlihat bahwa tertutup dipenuhi.

- terdapat elemen Identitas yaitu a :
- setiap elemen mempunyai invers, dengan di tunjukkan bahwa elemen identitas selalu ada di tiap baris maupun di tiap kolom.

Definisi 3.2.2.

Pasangan sandi $\emptyset : \mathbb{Z}_2^k \rightarrow \mathbb{Z}_2^n$ disebut sandi Grup jika \emptyset adalah homomorfisma grup.

Definisi 3.2.1 dapat disajikan dengan definisi 3.2.2. sebab menurut theorema 2.3.1 jika fungsi \emptyset homomorfisma grup maka $\text{Im}(\emptyset)$ adalah subgrup dari \mathbb{Z}_2^n.

Contoh :

Diberikan,

$\mathbb{Z}_2^3 = \{(000),(001),(010),(011),(100),(101),(110), (111)\}$.

$\mathbb{Z}_2^6 = \{(000000),(000001),(000010),(000100), \ldots \ldots \ldots \ldots (111110),(111111)\}$.

Didefinisikan fungsi $\emptyset : \mathbb{Z}_2^3 \rightarrow \mathbb{Z}_2^6$ sebagai berikut

(000) $\rightarrow \emptyset((000)) = (000000)$

(001) $\rightarrow \emptyset((001)) = (001011)$

(010) $\rightarrow \emptyset((010)) = (010110)$

(100) $\rightarrow \emptyset((100)) = (101000)$

(011) $\rightarrow \emptyset((011)) = (011101)$

(101) $\rightarrow \emptyset((101)) = (100111)$

(110) $\rightarrow \emptyset((110)) = (110100)$

(111) $\rightarrow \emptyset((111)) = (111001)$

Maka $\emptyset : \mathbb{Z}_2^3 \rightarrow \mathbb{Z}_2^6$ merupakan sandi grup, sebab

- $\emptyset : \mathbb{Z}_2^3 \rightarrow \mathbb{Z}_2^6$ jelas satu - satu,
- jika diambil sembarang x_1,x_2 dalam \mathbb{Z}_2^3 maka pas-
ti akan dipenuhi $\emptyset(x_1 + x_2) = \emptyset(x_1) + \emptyset(x_2)$, se hingga \emptyset merupakan homomorfisma grup.

Misalnya $x_1 = (011)$, $x_2 = (100)$ maka $x_1 + x_2 = (011) + (100) = (111)$. Selanjutnya $\emptyset(x_1) = \emptyset((011)) = (011101)$, $\emptyset(x_2) = \emptyset((100)) = (101100)$ dan $\emptyset(x_1 + x_2) = \emptyset((111)) = (110001)$

Sedangkan $\emptyset(x_1) + \emptyset(x_2) = (011101) + (101100) = (110001)$.

Jadi $\emptyset(x_1 + x_2) = \emptyset(x_1) + \emptyset(x_2)$.

3.3. SANDI GRUP DENGAN MATRIKS $C = [I \mid P]$

Sandi Grup dengan matriks $C = [I \mid P]$ adalah sandi yang terbentuk dengan menggunakan matriks C ukuran $k \times n$ dengan elemen - elemen 0 dan 1, dimana sandi yang terbentuk selalu mempunyai sifat k digit pertama dari teks sandi (sebut bagian ke 1 teks sandi) sama dengan teks biasanya. Selanjutnya $n-k$ digit lainnya disebut bagian ke 2 teks sandi atau check digit. Sebagai akibatnya matriks C dapat dipecah menjadi dua bagian, yaitu matriks identitas I ukuran $k \times k$ yang membentuk bagian ke 1 teks sandi dan matriks P ukuran $k \times n-k$ yang membentuk bagian ke 2 teks sandi yang dipisahkan dengan garis putus - putus vertikal Sehingga notasinya ditulis $C = [I \mid P]$.

Cara mentransformasikan teks biasa ke teks sandi Grup dengan matriks $C = [I \mid P]$, adalah sebagai berikut:

- Terlebih dahulu ditentukan matriks C ukuran $k \times n$ dengan elemen 0 dan 1.
- Untuk setiap teks biasa $X = (x_1, x_2, \ldots, x_k)$ diubah ke matriks baris $[X] = [x_1, x_2, \ldots, x_k]$ kemudian dilakukan perkalian matriks $[X] C = [Y]$.
- Didefinisikan fungsi \(\varnothing : \mathbb{Z}_2^k \rightarrow \mathbb{Z}_2^n \) sedemikian hingga \(\varnothing(X) = \begin{bmatrix} X \\ C \end{bmatrix} \), maka \(\varnothing : \mathbb{Z}_2^k \rightarrow \mathbb{Z}_2^n \) merupakan sandi Grup.

Bukti

1. Ambil sembarang \(X_1, X_2 \) dalam \(\mathbb{Z}_2^k \), jika \(X_1 \neq X_2 \) maka \(\varnothing(X_1) = \begin{bmatrix} X_1 \\ C \end{bmatrix} \neq \begin{bmatrix} X_2 \\ C \end{bmatrix} = \varnothing(X_2) \).

Sehingga \(\varnothing : \mathbb{Z}_2^k \rightarrow \mathbb{Z}_2^n \) adalah fungsi satu-satu.

Jadi \(\varnothing : \mathbb{Z}_2^k \rightarrow \mathbb{Z}_2^n \) dengan \(\varnothing(X) = \begin{bmatrix} X \\ C \end{bmatrix} \) merupakan pasangan sandi.

2. Ambil sembarang \(X_1, X_2 \) dalam \(\mathbb{Z}_2^k \), maka

\[
\varnothing(X_1 + X_2) = \begin{bmatrix} X_1 + X_2 \\ C \end{bmatrix} = \begin{bmatrix} X_1 \\ C \end{bmatrix} + \begin{bmatrix} X_2 \\ C \end{bmatrix} = \varnothing(X_1) + \varnothing(X_2).
\]

Sehingga \(\varnothing : \mathbb{Z}_2^k \rightarrow \mathbb{Z}_2^n \) merupakan homomorfisme grup.

- Ubah kembali matriks baris teks sandi ke bentuk teks sandinya.

Contoh:

Diberikan,

\[
\mathbb{Z}_2^3 = \left\{ (000),(001),(010),(011),(100),(101),(110),(111) \right\}.
\]

Dengan menggunakan matriks \(C \) dimana,

\[
C = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix}
\]

akan ditentukan sandi Grupnya.

Karena matriks nya berukuran \(3 \times 5 \) maka fungsinya adalah \(\varnothing : \mathbb{Z}_2^3 \rightarrow \mathbb{Z}_2^5 \), sedemikian hingga ,
$\varnothing(X) = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix}$, X dalam \mathbb{Z}_2^3

Sehingga diperoleh,

$\varnothing((000)) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

$\varnothing((001)) = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

$= \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

$\varnothing((010)) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

$= \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

$\varnothing((010)) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

$\varnothing((011)) = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

$= \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

$\varnothing((101)) = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

$= \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

$\varnothing((100)) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

$\varnothing((110)) = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

$= \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

$\varnothing((111)) = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

$= \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Jadi sandi Grupnya adalah

$\{(00000), (00101), (01011), (10010), (01110), (10111), (11001), (11100)\}$
3.4. SANDI GRUP DENGAN POLYNOMIAL PENGGAnda C(x)

Sandi Grup dengan polynomial pengganda C(x) adalah sandi yang dibentuk dengan menggunakan polynomial pengganda da C(x) = c_1 x^0 + c_2 x^1 + \ldots + c_{n-k+1} x^{n-k} anggota Z_2[x].

Adapun cara penyanyiannya adalah sebagai berikut:

- Teks biasa, misal X = (x_1 x_2 \ldots x_k) diubah menjadi bentuk polynomial x_1 x^0 + x_2 x^1 + \ldots + x_k x^{k-1}
dengan derajat terbesar k-1.

Sebagai contoh misal (10101) diubah menjadi

1 x^0 + 0 x^1 + 1 x^2 + 0 x^3 + 1 x^4 = 1 + x^2 + x^4. Sebaliknya

1 + x^2 + x^4 dapat diubah kembali menjadi (10101).

Untuk selanjutnya (10101) disebut rangkaian koefisien dari 1 + x^2 + x^4.

- Ditentukan polynomial sembarang C(x) = c_1 x^0 + c_2 x^1 + c_3 x^2 + \ldots + c_{n-k+1} x^{n-k} dalam Z_2[x] dengan
derajat n-k dan c_1 = 1.

- Didefinisikan fungsi \(\varnothing : Z_2^k \longrightarrow Z_2^n \) sedemikian

hingga \(\varnothing(X) = \varnothing((x_1 x_2 \ldots x_k)) = \) rangkaian koefisien dari hasil pergandaan antara polynomial x_1 x^0 + x_2 x^1 + \ldots + x_k x^{k-1} dengan polynomial C(x).

Maka \(\varnothing : Z_2^k \longrightarrow Z_2^n \) merupakan sandi Grup.

Bukti

1. Ambil sembarang \(X_1 = (x_{1,1} x_{1,2} \ldots x_{1,k}) \), \(X_2 = (x_{2,1} x_{2,2} \ldots x_{2,k}) \) dalam \(Z_2^k \). Jika \(X_1 \neq X_2 \),
maka \(x_{1,1} x^0 + x_{1,2} x^1 + \ldots + x_{1,k} x^{k-1} = x_{2,1} x^0 + x_{2,2} x^1 + \ldots + x_{2,k} x^{k-1} \). Sehingga \(\varnothing(X_1) = \varnothing(X_2) \).

\(C(x).x_1 x^0 + x_{12} x^1 + \ldots + x_{1k} x^{k-1} = \varnothing(X_1) \).

\(\varnothing(X_2) = \varnothing(x_{2,1} x^0 + x_{22} x^1 + \ldots + x_{2k} x^{k-1}) \).

Jadi, \(\varnothing(X_1) \neq \varnothing(X_2) \).
Maka $\emptyset : Z_2^k \rightarrow Z_2^n$ fungsi satu-satu, sehingga merupakan pasangan sandi.

2. Ambil sembarang $X_1 = (x_{11} x_{12} \ldots \ldots x_{1k})$, $X_2 = (x_{21} x_{22} \ldots x_{2k})$ dalam Z_2^k.

$\emptyset (X_1 + X_2)$

= rangkaian koefisien dari

\[C(x). \left[(x_{11} + x_{21})x^0 + (x_{12} + x_{22})x^1 + \ldots \ldots + (x_{1k} + x_{2k})x^{k-1} \right] \]

= rangkaian koefisien dari

\[C(x) \cdot \left[(x_{11}x^0 + x_{12}x^1 + \ldots + x_{1k}x^{k-1}) + (x_{21}x^0 + x_{22}x^1 + \ldots + x_{2k}x^{k-1}) \right]. \]

= rangkaian koefisien dari

\[C(x). (x_{11}x^0 + x_{12}x^1 + \ldots + x_{1k}x^{k-1}) + \]

\[C(x). (x_{21}x^0 + x_{22}x^1 + \ldots + x_{2k}x^{k-1}). \]

= rangkaian koefisien dari

\[C(x). (x_{11}x^0 + x_{12}x^1 + \ldots + x_{1k}x^{k-1}) + \]

rangkaian koefisien dari

\[C(x). (x_{21}x^0 + x_{22}x^1 + \ldots + x_{2k}x^{k-1}). \]

= $\emptyset (X_1) + \emptyset (X_2)$.

Karena dipenuhi $\emptyset (X_1 + X_2) = \emptyset (X_1) + \emptyset (X_2)$, maka $\emptyset : Z_2^k \rightarrow Z_2^n$ merupakan homomorfisma grup.

Jadi terbukti pasangan sandi $\emptyset : Z_2^k \rightarrow Z_2^n$ merupakan sandi Grup.

Dan polynomial $C(x)$ disebut polynomial pengganda.

Contoh:

Diberikan,

$Z_2^n = \{0000, 0001, 0010, 0100, 1000, 0111\}$.

Akan ditentukan sandi Grupnya dengan menggunakan polynomial \(1 + x^2 + x^3\).

Karena derajat dari polynomial penggandanya sama dengan 3 maka fungsinya \(\phi : \mathbb{Z}_2^4 \rightarrow \mathbb{Z}_2^7\), dengan

\[
\phi(x_1x_2x_3x_4) = \text{rangkaian koefisien dari } (1 + x^2 + x^3)(x_1x_0 + x_2x_1 + x_3x^2 + x_4x^3)
\]

Sehingga

\[
\phi((0000)) = \text{rangkaian koefisien dari } (1 + x^2 + x^3)(0x^0 + 0x^1 + 0x^2 + 0x^3) = (0x^0 + 0x^1 + 0x^2 + 0x^3 + 0x^4 + 0x^5 + 0x^6) = (0000000)
\]

\[
\phi((0001)) = \text{rangkaian koefisien dari } (1 + x^2 + x^3)(0x^0 + 0x^1 + 0x^2 + 1x^3) = (0x^0 + 0x^1 + 0x^2 + 1x^3 + 0x^4 + 1x^5 + 1x^6) = (0001011)
\]

demikian juga untuk teks - teks biasa lainnya lakukan dengan cara yang sama seperti diatas, akan diperoleh:

\[
\phi((0010)) = (0010110)
\]

\[
\phi((0100)) = (0110110)
\]

\[
\phi((0001)) = (1011000)
\]

\[
\phi((0011)) = (0011101)
\]

\[
\phi((0101)) = (0100111)
\]

\[
\phi((1001)) = (1010011)
\]

\[
\phi((0110)) = (0111010)
\]

\[
\phi((1010)) = (1001110)
\]
3.5. PENGURAIAN SANDI

Penguraian sandi adalah merubah teks sandi menjadi teks biasa. Untuk menguraikan teks sandi Grup menjadi teks biasa, terlebih dahulu dilihat pembentuknya.

Sandi Grup $\phi : \mathbb{Z}_2^k \rightarrow \mathbb{Z}_2^n$ yang dibentuk dengan menggunakan matriks $C = \begin{bmatrix} I \mid P \end{bmatrix}$ ukuran $k \times n$, teks sandi dirubah menjadi teks biasa dimana teks biasa $= k$ digit pertama dari teks sandi.

Sandi Grup $\phi : \mathbb{Z}_2^k \rightarrow \mathbb{Z}_2^n$ yang dibentuk dengan polynomial pengganda $G(x)$, pertama teks sandi dirubah menjadi bentuk polynomial. Kemudian polynomial dari teks sandi dibagi dengan polynomial pengganda $G(x)$. Selanjutnya teks biasa = rangkaian koefisien dari hasil bagi antara polynomial dari teks sandi dengan polynomial pengganda $G(x)$.

Contoh:

1. Diterima teks sandi (001011) yang dibentuk dengan matriks $C = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$.
Karena matriks yang digunakan berukuran \(3 \times 6\) maka fungsinya \(\emptyset : \mathbb{Z}_2^3 \rightarrow \mathbb{Z}_2^6\).

Sehingga teks biasa = 3 digit pertama dari teks sandi (001011) ; yaitu (001).

2. Diterima sandi Grup \((1001110)\) dalam \(\mathbb{Z}_2^7\) dengan pengganda \(1 + x^2 + x^3\).

Karena polynomial penggandanya mempunyai derajat 3 maka fungsinya \(\emptyset : \mathbb{Z}_2^3 \rightarrow \mathbb{Z}_2^7\).

Polynomial dari teks sandi adalah \(1x^0 + 0x^1 + 0x^2 + 1x^3 + 1x^4 + 1x^5 + 0x^6 = 1 + x^3 + x^4 + x^5\).

Selanjutnya polynomial dari teks sandi dibagi dengan polynomial pengganda dengan cara sebagai berikut

\[
\begin{array}{c|cccccc}
 & x^2 & + & 1 \\
\hline
1+x^2+x^3 & x^5 & + & x^4 & + & x^3 & + & 1 \\
\hline & x^3 & + & x^2 & + & 1 \\
\hline & x^3 & + & x^2 & + & 1 \\
\hline & 0
\end{array}
\]

Sehingga teks biasanya = rangkaian koefisien dari \((1 + x^2) = (1010)\).