BAB II
TEORI GRAPH

G adalah suatu graph jika G merupakan pasangan \((V,E)\) dengan \(V \not= \emptyset\), dimana

\[V = (v_1, v_2, \ldots) \] adalah himpunan titik-titik
\[E = (e_1, e_2, \ldots) \] adalah himpunan garis-garis.

Catatan: Setiap garis menghubungkan dua titik, tetapi setiap titik belum tentu dihubungkan dengan garis.

Graph G adalah graph tak hingga (infinite graph) jika,
1. \(V\) tak hingga
2. \(E\) boleh berhingga

Graph G adalah graph berhingga (finite graph) jika,
1. \(V\) berhingga dan \(V \not= \emptyset\)
2. \(E\) berhingga

Untuk masalah ini yang dibahas hanya graph berhingga, karena dalam jaringan kontak maupun jaringan kontak berurutan hanya graph berhingga saja yang dapat membantu dalam pembahasannya.

2.1. GRAPH TIDAK BERARAH (UNDIRECTED GRAPH)

Yaitu suatu graph yang setiap garis-garisnya tidak menentukan titik asal (source) dan titik tujuan (target).

Berikut ini diberikan beberapa definisi untuk graph tidak berarah.

Loop:

Suatu garis yang titik asal dan titik akhir sama.

Garis parallel (parallel edge)
Garis parallel (Parallel edge)
Dua atau lebih garis yang menghubungkan sepasang titik yang sama.

Titik terasing (isolated point)
Titik yang berderajad nol.

Derajad (degree/valency)
Derajad atau degree/valency dari suatu titik simpul V_i dari suatu graph G adalah banyaknya garis yang bertemu pada titik V_i.

Catatan: Untuk loop di V_i mempunyai degree dua.

Titik akhir (end vertex)
Adalah titik berderajad satu.

Adjacent
Dua titik disebut adjacent yaitu jika dua titik tsb dihubungkan langsung oleh paling sedikit satu garis.

Graph nol
Adalah graph yang hanya mempunyai titik, tidak mempunyai garis. Oleh karena itu setiap titik dari graph nol merupakan titik terasing.

Graph seddrhana (simple graph)
Suatu graph yang tidak mempunyai loop dan garis parallel.

Graph umum (general graph)
Suatu graph yang boleh mempunyai loop dan garis parallel.
Untuk graph yang mempunyai loop dan garis parallel disebut juga multi graph.

Graph lengkap (complete graph)
hubungan langsung oleh suatu garis.

Lintasan (path)
Barisan titik dan garis bergantian secara kontinue dan berlaiaman, dimulai dengan titik dan diakhiri dengan titik. Untuk lintasan tertutup titik akhir sama dengan titik awal.

Panjang lintasan
Banyaknya garis yang menghubungkan antara dua titik tertentu.

Walk :
Titik dan garis secara bergantian dan tidak boleh diulang.

Trail :
Suatu lintasan yang tidak memuat garis yang sama.

Cycle :
Suatu lintasan tertutup.

Geodesic :
Lintasan terpendek dari \(V_i \) ke \(V_j \), sedang panjang dari geodesic disebut jarak dengan notasi \(d(V_i,V_j) \)

Sub graph
\(H \) disebut sub graph dari \(G (V,E) \) jika \(H \) adalah suatu graph dengan himpunan titik \(V^* \) dan himpunan garis-\(E^* \) dengan sifat bahwa \(V^* \subseteq V \) dan \(E^* \subseteq E \).

Komponen
Sub graph maximum yang terhubung dari suatu graph.

Catatan : Untuk graph tidak terhubung sekurang-kurangnya mempunyai dua komponen.

Graph terhubung (connected graph)
Graph tak terhubung (disconected graph)
Suatu graph yang sedikitnya terdapat sepasang titik yang tidak dihubungkan oleh suatu lintasan.

Graph homomorphik
G_1 homomorphik dengan G_2, jika G_1 dan G_2 dapat di-
peroleh dari graph yang sama dengan cara membubuh-
kan titik-titik berderajat dua pada setiap rusuk-
rusuknya.
Contoh

Gb. 2.1. 2 graph yang homomorphik
antara satu dengan lainnya.

Graph isomorphik
Dua graph G dan H disebut isomorphik ($G \cong H$) ji-
ka ada korespondensi 1 - 1 antara titik di G dan
titik di H, sedemikian hingga banyak garis yang
menghubungkan sebarang dua titik di G sama dengan
banyak garis yang menghubungkan kedua titik yang
bersesuaian dari H.
Contoh:

Gb. 2.2. G & H isomorphik.
G & H dua graph isomorphic, maka korespondensi 1-1 antara dua graph tsb.

\[V_1 \rightarrow U_1 ; \ V_2 \rightarrow U_2 ; \ V_3 \rightarrow U_3 ; \ V_4 \rightarrow U_4 ; \ V_5 \rightarrow U_5 ; \ V_6 \rightarrow U_6. \]

2.1.1. planar dan dual graph.

Graph datar (plane graph)

Graph datar adalah graph yang dilukis pada suatu bidang datar sedemikian hingga tidak ada dua garis atau lebih yang saling potong memotong.

Graph planar

Adalah graph yang dapat digambarkan pada bidang datar sedemikian hingga tidak ada dua garis atau lebih yang saling memotong, dengan demikian dapat dikatakan bahwa graph planar adalah isomorphic dengan graph datar (plane graph).

Contoh:

Gb. 2.3.a. graph datar

Gb. 2.3.b. graph planar
Graph Kuratowski
- Graph Kuratowski I adalah graph lengkap dengan 5 titik.
- Graph Kuratowski II adalah regular graph yang terhubung dengan 6 titik dan 9 garis.

Catatan: Graph Kuratowski yang pertama sering dinyatakan dengan K_5 dan graph Kuratowski yang kedua sering dinyatakan dengan $K_{3,3}$.

Contoh:

Gb. 2.4. (a) graph Kuratowski pertama
(b) graph Kuratowski kedua.

Graph teratur (regular graph)
Graph sederhana yang semua titik simpulnya berde-
jad sama.

Teorema 2.1.
Graph lengkap dari 5 titik adalah graph tidak pl
Bukti:

Misal 5 titik dalam graph lengkap \(V_1, V_2, V_3, V_4, V_5 \), dan setiap titik dihubungkan dengan titik lainnya dengan suatu garis, akan dibuktikan bahwa graph tsb. tidak planar.

5 titik tsb. yang satu dengan lainnya dihubungkan dengan suatu garis, akan mempunyai satu siklus \(V_1 \) ke \(V_2 \) ke \(V_3 \) ke \(V_4 \) ke \(V_5 \) ke \(V_1 \) yang merupakan suatu segi lima beraturan (lihat gb. 2.5, a).

Gb. 2.5. merupakan graph lengkap dari 5 titik.

\(V_1 \) dihubungkan dengan \(V_3 \) (lihat gb. 2.5, b), dan garis yang menghubungkan boleh didalam atau diluar segi lima tsb. (tanpa memotong gambar yang ada),
V₃ didalam segilima tsb.
Gambarkan sebuah garis yang menghubungkan V₂ dan V₄, juga V₂ dan V₅. Karena tidak ada garis yang
dapat digambar didalam segi lima tsb. tanpa mem-
motong garis-garis pada gambar yang telah ada,
ma ka kedua garis tersebut digambar diluar segi li-
ma (lihat gb. 2.5. c). Demikian juga garis yang
menghubungkan V₃ dan V₅ tidak dapat digambar di-
luar tanpa memotong garis dari V₂ V₄, maka V₃ V₅
har us digambar didalam segi lima (lihat gb. 2.5.d)
Sekarang kita gambar garis dari V₁ ke V₄, garis
tidak dapat digambar diluar atau didalam segi lima
tanpa memotong garis yang ada.
Jadi graph lengkap dari 5 titik dapat diterapkan di
dalam graph datar (lihat gb. 2.5. e), maka graph
tidak planar.

Teorema 2.2
Graph Kuratowski yang kedua juga tidak planar.

Bukti :
Pada pembuktian graph Kuratowski yang kedua ini
analog dengan pembuktian graph Kuratowski yang I.

Beberapa sifat dari dua graph Kuratowski:
1. Keduanya regular graph (graph teratur).
2. Keduanya tidak planar.
3. Pemghapusun dari garis atau titik menjadikan ma
sing-masing graph planar.
4. Graph Kuratowski yang pertama adalah graph tidak
planar dengan jumlah titik paling sedikit, dan
graph Kuratowski yang kedua juga graph tidak p
planar dengan jumlah garis paling sedikit. Oleh
dak planar yang paling sederhana.

Teorema 2.3
Suatu graph adalah planar jika dan hanya jika tidak memuat sub graph yang homomorphic dengan \(K_5 \) atau \(K_{3,3} \).

Bukti:
Karena \(K_5 \) dan \(K_{3,3} \) tidak planar, maka jika suatu graph memuat subgraph yang homomorphic dengan \(K_5 \) atau \(K_{3,3} \) juga tidak planar.

Anggaplah hal tersebut salah, maka ada graph tidak planar yang tidak memuat subgraph yang homomorphic dengan \(K_5 \) atau \(K_{3,3} \). Misal \(G \) adalah graph terdiri dari beberapa graph tertentu yang mempunyai jumlah garis minimum, dan \(G \) suatu blok dengan \(d(G) > 3 \).

Misal \(x_0 = u_0 v_0 \) adalah garis yang bebas dari \(G \), maka graph \(F = G - x_0 \) mungkin planar.

Akan digunakan dua lemma dalam bukti teorema.

Lemma I
Terdapat sirkuit di \(F \) yang memuat \(u_0 \) dan \(v_0 \).

Bukti:
Anggaplah tidak ada cycle dalam \(F \) yang memuat \(u_0 \) dan \(v_0 \). Maka \(u_0 \) dan \(v_0 \) terletak dalam blok yang berbeda dari \(F \). Dan ada cut point \(w \) yang terletak pada setiap lintasan \(u_0 - v_0 \).

Dibentuk graph \(F_0 \) dengan menambah pada \(F \) garis - garis \(wu_0 \) dan \(wv_0 \).

Dalam graph \(F_0 \), \(u_0 \) dan \(v_0 \) masih terletak dalam blok-blok yang berbeda, katakana \(B_1 \) dan \(B_2 \), yang mungkin bersama-sama memiliki titik persekutuan \(w \).

Setiap \(B_1 \) dan \(B_2 \) mempunyai garis yang lebih sedi-
muat subgraph yang homomorfis dengan \(K_5 \) atau \(K_{3,3} \) jika penempatan \(w_u \) menghasilkan suatu subgraph \(H \) dari \(B_1 \) yang homomorfis dengan \(K_5 \) atau \(K_{3,3} \), maka subgraph \(G \) diperoleh dengan menempatkan \(w_u \) dengan suatu lintasan dari \(u_0 \) ke \(w \) yang berawal dari \(x_0 \) mungkin homomorfis dengan \(H \) dan juga ke \(K_5 \) atau \(K_{3,3} \), tetapi ini adalah kontradiksi.

Jadi \(B_1 \) planar, dengan jalan yang sama \(B_2 \) planar. \(B_1 \) dan \(B_2 \) keduanya dapat dilukis pada bidang datar, karena itu garis \(w_u \) dan \(w_v \) merupakan batas daerah luar. Jadi mungkin graph \(F_0 \) terletak pada bidang datar dengan \(w_u \) dan \(w_v \) terletak diluar daerah. Dengan menambah \(x_0 \), hal ini tidak dapat mempengaruhi sifat keplanaran dari \(F_0 \). Karena \(G \) adalah suatu subgraph dari \(F_0 + x_0 \), maka \(G \) adalah planar, kontradiksi.

Ini memperlihatkan bahwa ada suatu sirkuit dalam \(F \) memuat \(u_0 \) dan \(v_0 \).

Misalkan \(F \) diterapkan dalam bidang datar, sedemikian suatu sirkuit \(Z \) memuat \(u_0 \) dan \(v_0 \) yang mempunyai daerah maximum. Orientasikan garis \(Z \) dalam suatu sirkuit, misal \(Z [u,v] \) menunjuk jalan orientasi dari \(u \) ke \(v \) sepanjang \(Z \).

Jika \(v \) tidak segera mengikuti \(u \) pada \(Z \), maka kita menulis \(Z [u,v] \) untuk menunjuk lintasan bagian dari \(Z [u,v] \) diperoleh dengan memindahkan \(u \) dan \(v \).

Dengan sirkuit bagian luar, berarti subgraph \(F \) disebabkan oleh titik yang terletak diluar \(Z \) dan komponen-komponen dari subgraph ini disebut komponen-komponen bagian luar \(Z \) dengan potongan sebelah luas dari. Berarti suatu hubungan subgraph \(F \) yang...
sekurang-kurangnya satu titik dalam beberapa komponen bagian luar ke Z mempertemukan dua titik dari Z. Dalam cara seperti ini, kita mendefinisikan sirkuit bagian dalam Z, komponen bagian dalam dan potongan sebelah dalam.

Gb. 2.6.

Potongan sebelah luar atau dalam di sebut u - v, jika terpisah maka akan bertemu Z (u, v) maupun dengan Z (v, u). Oleh karenanya potongan sebelah luar atau dalam u - v tak terpisah, jika u dan v dihubungkan langsung pada Z.

Karena F dihubungkan, setiap potongan luar harus bertemu di Z, dan karena F tidak mempunyai cut-point, maka setiap potongan luar harus mempunyai sekurang-kurangnya dua titik bersekuatu.

Tak ada potongan luar yang dapat bertemu Z(u₀, v₀) atau Z(v₀, u₀) lebih dari satu titik, sebaliknya
akan ada sirkuit yang memuat u_0 dan v_0, dimana daerah-daerah bagian dalam itu lebih besar dari Z. untuk alasan yang sama, tak ada potongan sebelah dari $u_0 - v_0$ yang terpisah. Jadi setiap daerah bagian luar bertemu di Z tepat dua titik, dan $u_0 - v_0$ terpisah.

Begitu pula karena x_0 tak dapat ditambahkan ke F dalam cara planar, maka ada sekurang-kurangnya satu $u_0 - v_0$ yang memisahkan potongan bagian dalam.

Lemma 11: Ada suatu $u_0 - v_0$ yang terpisah, potongan sebelah luar bertemu Z (u_0, v_0), katakan pada u_1 dan Z (v_0, u_0) katakan v_1, sedemikian ada potongan e sebelah dalam yang keduanya $u_0 - v_0$ terpisah dan $u_1 - v_1$ terpisah.

Bukti: Andaikan lembaran salah.

Kita membuat $u_0 - v_0$ yang memisahkan potongan bagian dalam, dengan maksud menempatkan lagi didalam bidang tamb. (lihat gb. 2.6.)

Pandang $u_0 - v_0$ memisahkan potongan bagian dalam I_1 dengan u_0 yang terdekat dengan titik pertemuan potongan bagian dalam pada perpindahan sepanjang Z dari u_0. Secara kontinu dari u_0 dengan jalan yang sama kita dapat menunjukkan $u_0 - v_0$ memisahkan potongan bagian dalam I_2, I_3 dan seterusnya.

Misalkan u_2 dan u_3 menjadi titik pertama dan titik terakhir dari I_1 mempertemukan Z (u_0, v_0), dan v_2 dan v_3 menjadi titik pertama dan titik terakhir
mengan bagian luar mempunyai dua titik sekutu de-

ngan \(Z \) pada \(Z (v_3, u_2) \) atau \(Z (u_3, v_2) \), dengan kata-

lain ada potongan bagian luar yang mempertemukan -

\(Z (u_0, v_0) \) pada \(u_1 \) dengan \(u_0 - v_0 \) terpisah dan \(u_1 -

v_1 \) terpisah, kebalikan pada anggapan itu salah.

Karena itu suatu kurve \(C \) yang menghubungkan \(v_3 \)

dan \(u_2 \) dapat dilukis dalam daerah luar, karena

itu bukan garis dari \(F \). (lihat gb. 2.6.)

Kemudian \(I_1 \) dapat dipindahkan diluar \(C \) dalam su-

tu cara planar. Dengan cara sama \(u_0 - v_0 \) yang me-

misahkan potongan bagian dalam dapat dipindahkan
diluar \(Z \), maka hasil graph tsb. adalah plane. Te-

tapi garis \(x_0 \) dapat ditambahkan tanpa mempengaruhi

sifat keplanar dari \(F \), ini adalah suatu kontra-
diksi.

Bukti teorema :

Misalkan \(H \) menjadi potongan bagian dalam dijamin -

oleh lemma II yang mana \(u_0 - v_0 \) terpisah dan \(u_1 -

v_1 \) terpisah.
Gb. 2.7. Kemungkinan untuk subgraph tidak planar.

Dan misalkan \(w_0, w'_0, w_1, \) dan \(w'_1 \) menjadi titik \(H \) dimana \(H \) memenuhi \(Z(u_0,v_0), Z(v_0,u_0), Z(u_1,v_1), \) \(Z(v_1,u_1) \) berturut-turut. Sekarang ada 4 permasalahan yang perlu dipertimbangkan yang tergantung pada posisi relatif atas \(Z \) dan 4 titik tsb.

Permasalahan I.

Satu dari titik \(w_1 \) dan \(w'_1 \) pada \(Z(u_0,v_0) \) dan yang lainnya pada \(Z(v_0,u_0) \). Kemudian katakan \(w_0 = w_1 \) dan \(w'_0 = w'_1 \), dalam hal ini G memuat suatu subgraph homomorphic ke \(K_3,3 \) sebagaimana tercantum pada gb. (2.7.a) dimana terdapat dua titik yang ditunjukkan dengan titik terbuka dan titik tertutup.

Permasalahan II.
$Z(v_0, u_0)$, ada dua kemungkinan; $v_1 \neq w'_0$ atau $v_1 = w'_0$.

Jika $v_1 \neq w'_0$, maka G memuat subgraph homomorfik ke $K_3,3$ seperti terlihat pada gb. (2.7.b atau c) yang tergantung pada apakah w'_0 terletak pada $Z(u_1, v_1)$ atau $Z(v_1, u_1)$ secara berurutan. Jika $v_1 = w'_0$ (lihat gb. 2.7.d), maka G memuat suatu titik r dengan lintasan yang dihubungkan langsung ke w_1, w'_1 dan v_1 yang saling asing, semua titik (kecuali w_1, w'_1 dan v_1) yang ada H. Dalam hal ini, G juga subgraph homomorfik ke $K_3,3$.

Permasalahan III.

$w_1 = v_0$ dan $w'_1 \neq u_0$, misal w'_1 pada $Z(u_0, v_0)$. Sekali lagi G memuat suatu subgraph homomorfik ke $K_3,3$ seperti terlihat pada gb. (2.7.e), jika kebalikanya w'_0 pada $Z(v_1, u_0)$ ada suatu $K_3,3$ seperti pada gb. (2.7.f). Gambar ini secara mudah untuk menunjukkan G memuat $K_3,3$ jika $w'_0 = v_1$.

Permasalahan IV.

$w_1 = v_0$ dan $w'_1 = u_0$. Disini kita menganggap $w'_0 = u_1$ dan $w'_1 = v_1$, sebaliknya kita dalam suatu keadaan yang ditunjukan oleh satu dari tiga masalah yang pertama tadi.

Kita membedakan antara 2 bagian permasalahan. Misal P_0 adalah lintasan terpendek dalam H dari u_0 ke v_0, dan misal P_1 adalah lintasan terpendek dari u_1 ke v_1. Jika P_0 dan P_1 mempunyai sebuah titik persekutuan, maka G memuat suatu subgraph homomorfik dengan $K_3,3$, seperti terlihat pada gb. (2.7.g), sebaliknya G meuat subgraph homomorfik ke K_3 se-
Dual graph

Ambil G adalah graph datar dengan daerah-daerahnya F_1, F_2, \ldots, F_n, letakan titik-titik P_1, P_2, \ldots, P_m pada setiap daerah. Hubungkan titik P_i dan P_j untuk masing-masing daerah yang berdekatan (yang memilki suatu garis bersama), untuk suatu garis e yang terletak menyeluruh pada suatu daerah, misal F_k, banting suatu loop pada titik P_k, yang memotong di tepat satu kali.

Didap G^* yang terbentuk disebut dual dari G atau dual geometrik dari G.

Sehingga jelaslah terdapat korespondensi 1 - 1 antara garis di G dan garis di G^*, satu garis dari G^* memotong satu kali garis dari G.

Contoh:

![Diagram](http://eprints.undip.ac.id)

Gb. 2.8. Pembentukan dual graph.

Teorema 2.4

Syarat perlu dan cukup untuk graph planar G_1 dan
Terdapat suatu korespondensi $1 - 1$ di antara garis-garis dalam G_1 dan garis-garis dalam G_2 sedemikian hingga suatu himpunan garis dalam G_1 membentuk sirkuit jika dan hanya jika himpunan garis yang berkorespondensi dalam G_2 membentuk suatu cutset.

Bukti:

Gambarkan graph planar G_1, kemudian gambarkan dual G_2 dari G_1. Perhatikan sirkuit T sembarang dalam G_1, T akan membentuk beberapa kurva tertutup sedemikian dalam G_1, yang membagi G_1 menjadi dua daerah.

Jadi titik-titik dari G_2 dipisahkan menjadi 2, satu didalam T dan lainnya diluar T. Dengan kata lain, himpunan garis dari T^* dalam G_2 yang bersesuaian pada himpunan T dalam G_1 adalah suatu cutset dalam G_2. Dengan demikian jelas bahwa korespondensi pada sebuah cutset S^* dalam G_2, terdapat sirkuit tunggal yang terdiri dari korespondensi himpunan garis S dalam G_1 sedemikian hingga S adalah suatu sirkuit.

Jadi syarat perlu dipenuhi.

Untuk membuktikan syarat cukup, ambil G_1 suatu graph planar dan G' adalah graph yang mana terdapat korespondensi $1 - 1$ antara cutset-cutset dari G_1 dan sirkuit dari G' dan sebaliknya.

Ambil G_2 sebagai dual graph dari G_1, terdapat suatu korespondensi $1 - 1$ antara sirkuit-sirkuit G' dan cutset-cutset dari G_1 dan juga antara cutset-cutset dari G_1 dan sirkuit dari G_2.

Karena terdapat korespondensi $1 - 1$ antara sirkuit G' dan G_2 yang menunjukkan bahwa G' dan G_2 adalah isomorphic, maka G' harus merupakan dual dari G.
Abstrak dual

Graph G* disebut abstrak dual dari suatu graph G jika terdapat suatu korespondensi 1 - 1 antara garis-garis dari G dan garis-garis dari G* yang mempunyai sifat bahwa suatu himpunan garis dari G mem bentuk sirkuit dalam G jika dan hanya jika himpunan garis-garis dari G* yang berkorespondensi mem bentuk suatu cutset dalam G*

Teorema 2.5.

Suatu graph adalah planar jika dan hanya jika mempunyai abstrak dual.

Bukti:

Yang perlu dibuktikan adalah pada bagian suatu graph planar maka mempunyai abstrak dual.

Hanya perlu dibuktikan suatu graph tidak planar tidak memiliki abstrak dual.

Ambil G suatu graph tidak planar, kemudian menerut teorema Kuratowski, G memuat K5 atau K3,3 atau memuat subgraph yang homomorphic ke K5 atau K3,3.

Telah diketahui bahwa suatu graph G memiliki abstrak dual, jika setiap subgraph g dari G dan setiap graph yang homomorphic terhadap g memiliki abstrak dual, jadi apabila dapat ditunjukan bahwa, baik K5 maupun K3,3 tidak memiliki abstrak dual, makaterbuktilah teorema tsb.

Dibuktikan secara kontradiksi sbb.

a. Anggaplah bahwa K3,3 memiliki abstrak dual D.

Sedihiki bahwa cutset-cutset dalam K3,3 bersesua aian dengan sirkuit dalam D dan sebaliknya.

Karena K3,3 tidak memiliki cutset yang terdiri
yang terdiri dari dua garis. Hal ini berarti D terdiri dari bukan pasangan garis sejajar. Setiap sirkuit dalam $K_{3,3}$ panjangnya 4 atau 6, D tidak mempunyai cutset yang ≤ 4 garis. Oleh karena derajad dari setiap titik dalam D paling kecil adalah 4. Maka D tidak mempunyai garis sejajar dan derajad dari setiap titik paling sedikit 4, maka D paling sedikit harus mempunyai 5 titik yang masing-masing berderajad ≥ 4. Ini berarti D paling tidak harus mempunyai $(5 \times 4)/2 = 10$ garis. Ini kontradiksi, karena $K_{3,3}$ mempunyai 9 garis dan juga abstrak dualnya. Dengan demikian $K_{3,3}$ tidak mempunyai abstrak dual. Demikian pula untuk K_5.

b. Andaikan K_5 mempunyai abstrak dual H, yang mana K_5 mempunyai:

- 10 garis, tidak ada pasangan garis yang sejajar, tidak ada cutset dengan 2 garis, ada cutset dengan 4 atau 6 garis.

- Maka H harus mempunyai:

10 garis, tidak ada pasangan garis yang sejajar, tidak ada titik yang berderajad 3, sirkuit panjangnya hanya 4 atau 6.

Oleh sebab itu H sekarang adalah segi 6 (sirkuit dengan panjang 6), dan tidak ada lebih dari 3 garis yang dapat ditambahkan kesegi 6 tsb. tanpa mem bentuk sirkuit dengan panjang 3 atau pasangan garis sejajar. Hal ini tidak diperbolehkan dalam H dan H mempunyai 10 garis, maka harus ada paling sedikit 7 titik dalam H. Derajad dari masing-masing titik ini paling sedikit 3. Hal ini mengakibatkan H paling sedikit mempunyai 11 garis, kontradiksi.
2.1.2. Tree dan spanning tree.

Tree (pohon):
Adalah suatu graph sederhana yang terhubung, yang yang tidak memuat sirkuit.
Dengan kata lain, setiap pasang titik yang berlain an dihubungkan dengan tepat satu lintasan.

Teorema 2.6
Jika dalam graph G hanya terdapat satu lintasan pada setiap pasang titiknya, maka G adalah suatu tree.

Teorema 2.7
Dalam tree T hanya terdapat satu lintasan pada setiap pasang titik-titiknya.

Teorema 2.8
Sebuah tree dengan n titik mempunyai n - 1 garis.

Teorema 2.9
Graph terhubung dengan n titik dan n - 1 garis adalah tree.

Akar (root):
Adalah suatu titik yang ditonjolkan (dibedakan) dari suatu tree.

Spanning tree :
T disebut spanning tree dari graph G, bila T adalah suatu subgraph dari G dan T memuat semua titik dari graph G.

Catatan: Dalam suatu graph G paling sedikit mempunyai spanning tree dan untuk tree sekali-gus merupakan spanning tree.
Cabang (branch)
Adalah garis-garis dalam spanning tree.

Tali (chord)
Adalah garis-garis dari graph G yang dihapus untuk membentuk spanning tree.

Sifat-sifat dari tree
1. Setiap pasang titik dalam tree T hanya mempunyai satu lintasan.
2. Dalam graph G apabila hanya ada satu lintasan antara setiap pasang titik \((V_i, V_j)\) disebut tree.
3. Sebuah tree dengan \(n\) titik mempunyai \(n - 1\) garis.

Himpunan pemotong (cutset)
Himpunan pemotong dari suatu graph \(G = (V, E)\) adalah suatu himpunan bagian \(C\) dari \(E\) sehingga dengan dihapusnya semua garis yang ada di \(C\), banyak graph bagian yang terjadi adalah paling banyak satu lebih banyak dari komponen \(G\).

Catatan: Himpunan pemotong tidak terjadi bila yang dihapus garis-garis yang ada pada himpunan sejati dari \(C\).

Contoh:

Gb. 2.9. Graph \(G\) dengan 6 titik & 9 garis.

Graph \(G = (V, E)\) dengan
\[V = \{ V_1, V_2, V_3, V_4, V_5, V_6 \} \]
\[E = \{ e, f, g, h, i, p, b, c, d \} \]
\(C = \{ a, b, c \} \), memisahkan graph \(G \) menjadi dua yaitu \(G_1 = (V_1,E_1) \) dengan \(V_1 = \{ v_1 \} \) dan \(E_1 = \emptyset \) dan \(G_2 = (V_2,E_2) \) dengan \(V_2 = \{ v_2, v_3, v_4, v_5, v_6 \} \) dan \(E_2 = \{ c, d, e, f, h, k \} \).

Himpunan pemotong dasar

Misal \(T \) adalah suatu spanning tree dalam suatu garap \(G \), \(b \) adalah sembarang sambang dalam \(T \). \{b\} merupakan himpunan pemotong dari \(T \). maka \{b\} memisahkan titik-titik dari \(T \) menjadi dua himpunan \(V_1 \) dan \(V_2 \) saling lepas, yang merupakan bagian dari \(G \), himpunan pemotong \(S \) dari \(G \) yang bersesuaian dengan \(V_1 \) dan \(V_2 \) ialah himpunan garis yang memhubungkan titik di \(V_1 \) dan titik di \(V_2 \) dan \(S \) akan memuat \(b \). Maka \(S \) yang demikian disebut himpunan pemotong dasar terhadap \(T \). (\(S \) hanya memuat satu cabang dari \(T \)).

Contoh

\[
\begin{align*}
V_1 & \quad
\end{align*}
\]

Sirkuit dasar

Ambil \(T = (V,E_1) \) adalah suatu spanning tree dari graph \(G \) dan \(a \) adalah sebuah tali terhadap \(T \) di \(G \), maka graph \(G' = (V,E_2) \) dimana \(E_2 = E_1 \cup \{ a \} \) memuat sebuah sirkuit yang disebut sirkuit dasar terhadap spanning tree \(T \) untuk \(G \).

Contoh: (lihat gb. 2. 10.)

Spanning tree \(T \) dengan menambahkan garis \(a \) didapat subgraph \(G' \) yang memuat sirkuit da
Rank dan Nullity.

Dalam suatu graph \(G \).

\[n = \text{banyak titik dari } G \]
\[e = \text{banyak garis dari } G \]
\[k = \text{banyak komponen dari } G \]

Masing-masing komponen dari suatu graph \(G \) paling sedikit mempunyai satu titik \((n > k) \) dan jumlah garis dari suatu komponen \(e \geq n - k \), karena banyak titik dari suatu graph paling sedikit satu - atau dalam suatu graph \(G \) banyak titik akan sama - atau lebih besar dari jumlah komponennya \((n > k \text{ atau } n - k \geq 0) \), maka \(e - n + k \geq 0 \).

Rank dari \(G \) = banyak cabang dalam spanning tree dari \(G \).

Nullity = banyak tali dari \(G \).

Rank + Nullity = banyak garis dalam graph \(G \).

Atau Rank \[\begin{align*} r &= n - k. \end{align*} \]

Nullity, \[\begin{align*} n &= e - n + k. \end{align*} \]

2.2. GRAPH BERARAH (DIRECTED GRAPH / DIGRAPH)

Graph berarah adalah suatu graph yang setiap garisnya ditentukan arahnya yaitu mempunyai titik awal \((\text{source}) \) menuju titik tujuan \((\text{target/terminal}) \).

Jaringan (Net) adalah pasangan \((V,E)\) dengan \(V \) finite, \(V \neq \emptyset \) dan \(X \) finite (boleh kosong) dimana

\[V = (v_1, v_2, \ldots, v_s) \] adalah himpunan titik-titik.

\[X = (x_1, x_2, \ldots, x_s) \] adalah himpunan garis yang disebut directed line dan setiap directed line \((\text{garis}) \) menentukan dengan tunggal titik mula \((\text{source}) \) dan titik akhir \((\text{target}) \).
Contoh:

Gb. 2.11. Graph berarah / net.

Loop
Suatu garis yang titik mula dan titik tujuan sama
Contoh: (lihat gb. 2.11.)
\[x_5, x_6 \]

Garis parallel (parallel edge)
Dua garis yang sama-sama meninggalkan suatu titik
dan sama-sama menuju ketitik yang lain.
Contoh: (pada gb. 2.11.)
\[x_2 \text{ dan } x_4 \]

Out degree
Banyak garis yang meninggalkan suatu titik (diberi
simbol \(\text{od}(V) \))
Contoh: (gb. 2.11.)
\[\text{od}(V_1) = 2, \text{od}(V_3) = 1, \text{dst.} \]

Indegree
Banyak garis yang menuju suatu titik (diberi sim-
bol \(\text{id}(V) \))
Contoh: (lihat gb. 2.11.)
\[\text{id}(V_1) = 2, \text{id}(V_3) = 0, \text{dst.} \]
Untuk graph berarah dengan \(n \) titik dan \(e \) garis ma-
ka \[\Rightarrow \text{od}(V_i) = \Rightarrow \text{id}(V_i) = e. \]
Titik terasing (isolated point)

Suatu titik yang mempunyai od degree = indegree = 0

Pendant

Suatu titik yang mempunyai jumlah degree satu.

\[\text{od}(V_1) + \text{id}(V_1) = 1 \]

Graph berarah sededdhana (simple digraph)

Suatu graph tanpa loop dan garis parallel.

Graph berarah simetris (symetris digraph)

Jika dalam graph berarah mempunyai garis dari u ke v, maka juga mempunyai garis dari v ke u.

Graph berarah komplit simetris (complete symetris digraph)

Graph berarah simetris yang setiap titik dihubungkan dengan semua titik dalam graph.

2.2.1. Lintasan dan keterhubungan.

Pada dasarnya lintasan dalam graph berarah adalah sama dengan graph tak berarah, hanya untuk graph berarah setiap garis yang menghubungkan setiap titiknya mempunyai i arah.

Lintasan dalam graph berarah dibedakan menjadi 2 yaitu:

-. Lintasan searah

Suatu lintasan yang searah dengan arah garis yang dituju.

-. Semi lintasan:

Lintasan yang tidak sesuai(bukan searah).

Karena ada semi lintasan dan lintasan searah, maka terdapat juga semi sirkuit dan sirkuit searah dalam graph berarah.

Sirkuit searah

Lintasan searah yang mempunyai titik mula dan ti--
Semi sirkuit

Semi lintasan yang mempunyai titik mula dan titik tujuan yang sama.

Terhubung kuat (strongly connected)

Suatu graph berarah yang paling sedikit mempunyai lintasan searah dari setiap titik ke setiap titik yang lain.

Terhubung lemah (weakly connected)

Suatu graph berarah setiap titik tidak mesti mempunyai lintasan searah ke setiap titik yang lain.

2.2.2. Pohon (tree), root, spanning tree.

Analog dengan graph tak berarah, tree untuk graph berarah adalah setiap titik terhubung dan tidak mempunyai sirkuit (sirkuit searah maupun semi sirkuit).

Demikian juga untuk spanning tree dan root untuk graph berarah analog dengan spanning tree dan root tidak berarah.

Contoh:

![Graph Example](http://eprints.undip.ac.id)

Gb. 2. 12.

Spanning treenya yang digaris dengan titik-titik, dan rootnya V_1

2.4. ALJABAR BOOLE DAN FUNGSI BOOLE.

Dalam sub bab ini akan dibahas sedikit masalah aljabar Boole dan fungsi Boole.
Definisi aljabar Boole

Aljabar Boole adalah suatu sistem aljabar \((B, +, \cdot, \', 0, 1)\) yang terdiri dari suatu himpunan \(B\), operasi biner "\(+\)" dan "\(\cdot\)" dan memenuhi postulat-postulat:

I. Untuk operasi "\(\cdot\)"
1. Tertutup : \(\forall x, y \in B, \exists z \in B \implies x \cdot y = z\)
2. Assosiatip : \((x \cdot y) \cdot z = x \cdot (y \cdot z)\)
3. Komutatif : \(x \cdot y = y \cdot x\)
4. Distributip: \(x \cdot (y + z) = (x \cdot y) + (x \cdot z)\)
5. \(\forall x \in B, \exists x' \implies x \cdot x' = 0\)
6. J unsur identitas 1 \implies x \cdot 1 = x

II. Untuk operasi "\(+\)"
1. Tertutup : \(\forall x, y \in B, \exists z \in B \implies x + y = z\)
2. Assosiatip : \((x + y) + z = x + (y + z)\)
3. Komutatif : \(x + y = y + x\)
4. Distributip: \(x + (y \cdot z) = (x + y) \cdot (x + z)\)
5. \(\forall x \in B, \exists x' \implies x + x' = 1\)
6. J unsur identitas 0 \implies x + 0 = x

Aljabar Boole dengan dua nilai ini setara dengan logika biner yang berhubungan dengan variabel-variabel yang mempunyai dua nilai diskrit dan dengan operasi-operasi yang mempunyai arti logika. Dua nilai yang dimiliki oleh variabel itu dapat dinamakan apa saja (misalnya benar dan salah, ya dan tidak dst.), tetapi untuk ini dua nilai diartikan sebagai bit yang mempunyai nilai 1 dan 0.

Logika biner mempunyai 3 operasi dasar, AND, OR, NOT.

1. AND operasi ini diwakili oleh tanda perkalian (dot)
 Misal \(x \cdot y = z\) atau \(xy = z\) dibaca "\(x\) AND \(y\) sama dengan \(z\)". Untuk ini AND diartikan sebagai \(z = 1\), jika \(x = 1\) dan \(y = 1\), \(z = 0\) jika \(x = 1\) dan \(y = 0\) ata-
2. OR operasi ini diwakili oleh tanda " + ". Misal \(x + y = z \) dibaca " \(x \) OR \(y \) sama dengan \(z \)", yang berarti \(z = 1 \) jika \(x = 1 \) atau \(y = 1 \). Jika \(x = 0 \) atau \(y = 0 \) maka \(z = 0 \)

3. NOT operasi ini diwakili oleh tanda aksen (') atau garis diatas. Misal \(x' = z \) atau \(\bar{x} = z \) dibaca " \(x \) NOT sama dengan \(z \)"; yang berarti bahwa \(z \) bukan \(x \), yaitu jika \(x = 1 \) maka \(z = 0 \) dan jika \(x = 0 \) maka \(z = 1 \)

Teorema 2.10

Untuk setiap \(x \) dalam aljabar Boole, berlaku

a. \(x \cdot x = x \)

b. \(x + x = x \)

Bukti :

a. \(x = x \cdot 1 \)
 \[= x (x + x') \]
 \[= xx + xx' \]
 \[= xx + 0 \]
 \[x = xx \]

b. \(x = x + 0 \)
 \[= x + xx' \]
 \[= (x + x)(x + x') \]
 \[= (x + x) \cdot 1 \]
 \[= x + x \]

Teorema 2.11

Untuk setiap elemen dalam aljabar Boole, berlaku

a. \(x + 1 = 1 \)

b. \(x \cdot 0 = 0 \)

Bukti :

a. \(x + 1 = 1 \cdot (x + 1) \)
 \[= (x + x')(x + 1) \]
= x + 0 + x + x'
= x + x'
= 1

b. \(x \cdot 0 = x \cdot (xx') \)
\[= (xx) x' \]
\[= x \cdot x' \]
\[= 0 \]

Teorema 2.12
\((x') = x\) untuk setiap \(x\) dalam aljabar Boole.

Bukti:
\[x + x' = 1 \text{ dan } xx' = 0 \]
Komplemen \(x\) adalah \(x'\) dan komplemen \(x'\) adalah \(x\),
dapat ditulis \((x')' = x\).

Teorema 2.13
Untuk setiap pasang unsur \(x\) dan \(y\) dalam aljabar Boole, berlaku
a. \(x + xy = x \)
b. \(x(x + y) = x \)

Bukti:
a. \(x = 1 \cdot x \)
\[= (1 + y) x \]
\[= l.x + y.x \]
\[= x + yx \]
\[= x + xy \]

b. \(x(x + y) = xx + xy \)
\[= x + xy \]
\[= x(1 + y) \]
\[= x \cdot l \]
\[= x \]
a. \((x + y)' = x' \cdot y'\)

b. \((xy)' = x' + y'\)

Bukti;

a. Tabel kebenaran

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(x + y)</th>
<th>(x + y)'</th>
<th>x'</th>
<th>y'</th>
<th>x' \cdot y'</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Dari tabel diatas terlihat \((x + y)' = x' \cdot y'\)

b. Tabel kebenaran

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(xy)</th>
<th>(xy)'</th>
<th>x'</th>
<th>y'</th>
<th>x' + y'</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Dari tabel diatas terlihat \((xy)' = x' + y'\)

Fungsi Boole:

Suatu fungsi Boole adalah suatu pernyataan yang dibentuk dari variabel-variabel biner dengan memakai operasi "\(\cdot\), +, \(\ldots\), 0" dalam jumlah berhingga.

Untuk nilai-nilai variabel biner, fungsi dapat bernilai 1 dan 0, misal \(F_1 = x \cdot y \cdot z'\).

Akan sama dengan 1 jika \(x = 1\), \(y = 1\) dan \(z' = 1\), jika tidak \(F_1 = 0\).

Untuk itu fungsi dapat disajikan dengan daftar kebaran, dan untuk menyatakannya diperlukan \(2^n\) kombinasi 1 dan 0, untuk \(n\) buah variabel biner.

Contoh:
\[F_3 = x' y' z + x' y z + x y', \quad F_4 = x y' + x' z \]

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>(F_1)</th>
<th>(F_2)</th>
<th>(F_3)</th>
<th>(F_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Dari tabel diatas terlihat bahwa fungsi Boole dengan variabel biner tidak mempunyai harga yang tunggal. Fungsi Boole mempunyai harga 1 apabila paling sedikit satu dari kombinasi variabel biner berharga satu.

2.5. MATRIK DALAM GRAPH.

Matrik insiden.

Ambil graph \(G \) dengan \(n \) titik dan \(e \) garis juga tidak mempunyai loop. Didefinisikan matrik \(A = (a_{ij}) \) yang berukuran \(n \times e \).

dimana \(n \) = jumlah baris yang menyatakan banyak titik.
\(e \) = jumlah kolom yang menyatakan banyak garis.

Elemen matrik \(A = (a_{ij}) \)
\[a_{ij} = 1, \text{ jika } e_j \text{ merupakan derajad dari } v_i \]
\[a_{ij} = 0, \text{ jika } e_j \text{ tidak merupakan derajad dari } v_i. \]

Contoh :
Gambar 2.13.

\[
\begin{array}{cccccccc}
& a & b & c & d & e & f & g & h \\
V_1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
V_2 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
V_3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
V_4 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
V_5 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\
V_6 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

Catatan:

1. Jika setiap garis adalah suatu insiden yang tepat dua titik, maka setiap kolom matrik \(A \) mempunyai tepat dua elemen yang bernilai satu.
2. Banyak nilai 1 pada setiap baris sama dengan derajat dari suatu titik yang sesuai.
3. Baris yang semua elemennya 0, menunjukan titik yang terisolasi.
4. Garis yang sejajar pada setiap graph menghasilkan kolom yang sama pada matrik insiden.
5. Jika graph \(G \) adalah disconnected dan terdiri dua komponen \(a \) dan \(b \), matrik insiden dapat ditulis dalam
bentuk

\[
A = \begin{bmatrix}
A(g_1) & 0 \\
0 & A(g_2)
\end{bmatrix}
\]

yang mana \(A(g_1)\) dan \(A(g_2)\) adalah matrik insiden dari komponen \(g_1\) dan \(g_2\). Dengan demikian tidak ada garis pada \(g_1\) yang merupakan insiden pada titik \(g_2\), dan sebaliknya.

Matrik sirkuit.

Misal jumlah sirkuit yang berbeda dari graph \(G\) adalah \(q\) dan jumlah garis dalam \(G\) adalah \(e\). Maka matrik sirkuit \(B = (b_{ij})\) adalah berukuran \(q \times e\) dan elemen didefinisikan sbb.

\(b_{ij} = 1\) jika sirkuit ke \(i\) memuat garis ke \(j\).

\(b_{ij} = 0\) jika sirkuit ke \(i\) tidak memuat garis ke \(j\).

Contoh:

(lihat gb. 2.13), gambar tsb. mempunyai 4 sirkuit yang berbeda yaitu \(\{a, b\}, \{c, e, g\}, \{d, e, f, g\}, \{c, d, f, e\}\), maka matrik sirkuit berukuran 4 x 8

\[
B = \begin{bmatrix}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
3 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\
4 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0
\end{bmatrix}
\]

Catatan:

1. Kolom yang menyatakan semua elemennya 0 menyatakan garis tsb. tidak ada hubungan ke sebarang sirkuit.
2. Setiap baris dari \(B(G)\) adalah merupakan vektor sir
3. Setiap baris yang mempunyai nilai 1 tunggal adalah mewakili semua loop.

4. Nilai satu pada baris sama dengan jumlah garis dari sirkuit yang bersangkutan.

5. Jika graph terpisah dan terdiri dari dua komponen \(g_1 \) dan \(g_2 \) maka matrik sirkuit \(B(G) \) dapat dituliskan dalam bentuk

\[
B(G) = \begin{bmatrix}
B(g_1) & 0 \\
0 & B(g_2)
\end{bmatrix}
\]

yang mana \(B(g_1) \) dan \(B(g_2) \) menyatakan matrik sirkuit \(g_1 \) dan \(g_2 \), dan sirkuit \(g_1 \) tidak mempunyai garis yang ada pada sirkuit \(g_2 \) dan sebaliknya.

Matrik sirkuit dasar.

Submatrik (dari matrik sirkuit) dengan semua baris berkorespondensi dengan sirkuit dasar dinamakan matrik sirkuit dasar dengan notasi \(B_f \).

Contoh:

Gb. 2.14

Graph dengan matrik sirkuit dasar dalam kaitannya dengan spanning tree yang perlihatkan dengan garis tebal.

\[
B_f = \begin{bmatrix}
1 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 1
\end{bmatrix}
\]

Jika \(n \) adalah jumlah titik dan \(e \) jumlah garis dalam graph
Catatan:

1. Pada matrik B_f, $(e - n + 1)$ kolom pertama sesuai dengan $e - n + 1$ tali pada graph G.
2. Nilai l dalam setiap kolom dari $(e - n + 1)$ kolom pertama sesuai dengan tali yang membentuk sirkuit dasar dengan spanning tree nya.
3. Nilai l dalam setiap baris adalah banyak garis dari sirkuit dasar dengan cabang dalam spanning tree.
4. Dari keterangan diatas matrik B_f dapat ditulis dalam bentuk
 \[B_f = \begin{bmatrix} I_\mu & B_t \end{bmatrix} \]
 dengan I matrik identitas orde $\mu = e - n + 1$ dan B_t submatrik $\mu \times (n - 1)$ yang berkorespondensi dengan cabang dari spanning tree nya. Dan rank B_f adalah:
 \[\text{Rank } B_f = \mu = e - n + 1 \]

Matrik himpunan pemotong.

Matrik himpunan pemotong adalah matrik $C = (c_{ij})$ dengan baris-barisnya berkorespondensi dengan himpunan pemotong, dan kolomnya ke garis dari graph.

Elemen dari matrik himpunan pemotong adalah

\[c_{ij} = 1 \text{ jika himpunan pemotong ke } i \text{ terdapat garis ke } j \]
\[c_{ij} = 0 \text{ jika himpunan pemotong ke } i \text{ tidak terdapat garis ke } j \]

Contoh:
$$\begin{array}{cccccccc}
 & a & b & c & d & e & f & g & h \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
2 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
3 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
4 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
5 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
6 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
7 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
8 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
\end{array}$$

Catatan:

1. Permutasi baris atau kolom dalam matrik himpunan pemotong = penamaan kembali dari himpunan pemotong dan garis.

2. Setiap baris $C(G)$ adalah vektor himpunan pemotong

3. Garis yang sejajar menghasilkan kolom yang sama.

4. Pada graph terhubung setiap himpunan kejadian garis dan titik adalah himpunan pemotong, maka baris $A(G)$ juga sebagai baris matrik $C(G)$.

Matrik himpunan pemotong dasar.

Matrik himpunan pemotong (dari graph terhubung dengan e garis dan n titik) adalah submatrik $(n-1) \times e$ dari matrik C, dengan baris-barisnya berkorespondensi ke himpunan pemotong dasar, dalam kaitannay dengan spanning tree.

Pada matrik himpunan pemotong dasar ditulis

$$C_f = [C_c \mid I_{n-1}]$$

Dengan I_{n-1} adalah matrik identitas berorder $n-1$ yangmana kolom $n-1$ cabang dari spanning tree, dan kolom e-$n+1$ ter- tama dari matrik C_c korespondensi ke tali contoh:
Gb. 2.16

\[
\begin{array}{cccccccc}
\text{b} & \text{c} & \text{d} & \text{a} & \text{e} & \text{f} & \text{g} & \text{h} \\
1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
2 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
3 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
4 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\]

Matrik lintasan.

Matrik lintasan didefinisikan untuk menentukan pasangan \((V_i, V_j)\) pada graph \(G\) dan dituliskan dengan simbol \(P(V_i, V_j)\). Matrik lintasan untuk titik \(V_i\) dan \(V_j\) yaitu

\[P(V_i, V_j) = (p_{ij}) \]

dengan elemen

\[p_{ij} = 1 \] jika garis ke \(j\) ada pada lintasan ke \(i\)

\[p_{ij} = 0 \] jika garis ke \(j\) tidak ada pada lintasan ke \(i\)

Contoh (lihat gb. 2.13) perhatikan semua lintasan antara titik \(v_3\) dan \(v_4\), ada 3 lintasan yaitu (h, e), (h, g, c), (h, f, d, c), sehingga matrik lintasannya berukuran \(3 \times 8\).

\[
\begin{array}{cccccccc}
\text{a} & \text{b} & \text{c} & \text{d} & \text{e} & \text{f} & \text{g} & \text{h} \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
2 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\
3 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\
\end{array}
\]

Catatan:

1. Kolom yang mempunyai nilai 0 semua menyatakan bahwa garis tidak terletak pada lintasan antara \(V_i\) dan
2. Kolom yang mempunyai nilai 1 semua menyatakan garis terletak pada setiap lintasan antara V_i dan V_j.
3. Tidak ada baris yang mempunyai nilai 0 semua.
4. Jumlah cicit dari sebarang 2 baris pada $P(V_i,V_j)$ membentuk suatu sirkuit.

Matrik tetangga (adjacent matrik).

Matrik tetangga dari graph G dengan n titik dan e garis, dimana tidak ada garis sejajar, adalah matrik simetris $X = (x_{ij})$ yang berukuran $n \times n$ dimana

$x_{ij} = 1$ jika ada garis antara titik i dan j

$x_{ij} = 0$ jika tidak ada garis antara titik i dan j

Contoh:

\[
\begin{array}{cccccc}
V_1 & V_2 & V_3 & V_4 & V_5 & V_6 \\
V_1 & 0 & 1 & 1 & 0 & 1 & 0 \\
V_2 & 1 & 0 & 0 & 1 & 1 & 0 \\
V_3 & 1 & 0 & 0 & 1 & 1 & 0 \\
V_4 & 0 & 1 & 1 & 0 & 1 & 1 \\
V_5 & 1 & 1 & 1 & 1 & 0 & 0 \\
V_6 & 0 & 0 & 0 & 1 & 0 & 0 \\
\end{array}
\]

Catatan:

1. Semua nilai diagonal X adalah 0, jika tidak ada loop.
2. Matrik tetangga didefinisikan untuk graph tanpa garis sejajar.
3. Untuk graph sederhana derajad dari titik = banyak elemen bernilai 1 dalam kaitannya dengan baris atau kolom pada matrik X.
Hubungan antara matrik A_f, B_f, dan C_f

Untuk ini kita akan mencari hubungan antara matrik sirkuit dasar, matrik himpunan pemotong dan matrik inside tereduksi

$$B_f = \begin{bmatrix} I_n & B_t \end{bmatrix}$$

$$C_f = \begin{bmatrix} C_c & I_{n-1} \end{bmatrix}$$ (2)

yang mana indeks t menyatakan submatrik yang berkaitan dengan cabang dari spanning tree dari indeks c menyatakan submatrik yang berkaitan dengan tali.

Misal spanning tree T untuk persamaan 1) dan 2) adalah sama dan orde dari garis dalam kedua persamaan tsb. juga sama demikian juga untuk A_f (ukuran $n-1$ xe), A_f dituliskan

$$A_f = \begin{bmatrix} C_c & A_t \end{bmatrix}$$

dengan A_t terdiri dari $n-1$ kolom yang berhubungan dengan cabang dan A_c submatrik yang berkaitan dengan $e - n + 1$ tali

Untuk kolom pada A_f dan B_f disusun dalam orde yang sama maka bentuk persamaan dapat ditulis

$$A_f \cdot B_f^T = 0$$

$$\begin{bmatrix} C_c & A_t \end{bmatrix} \cdot \begin{bmatrix} I_{n-1} \\ B_t \end{bmatrix} = 0$$

$$A_c \cdot A_t \cdot B_t^T = 0$$

Jika A_t tidak tunggal, A_t mempunyai invers

$$A_c = -A_t \cdot B_t^T$$

$$A_c \cdot A_t^{-1} = -B_t$$

dalam operasi modulo 2 $-1 = 1$

$$B_t^T = A_c \cdot A_t^{-1}$$

Demikian juga untuk matrik B_f dan C_f

$$C_f \cdot B_f^T = 0$$

$$\begin{bmatrix} C_c & I_{n-1} \end{bmatrix} \cdot \begin{bmatrix} I_{n-1} \\ B_t \end{bmatrix} = 0$$

$$C_c = -B_t^T$$