PENDAHULUAN

Pada mulanya sience dan teknik terpisah jelas. Sience bekerja dengan ide hipotesa dan aksioma-aksioma serta menghubungkan satu sama lainnya secara abstrak. Sedang teknik lebih banyak bekerja dengan fisik yang nyata dan menghubungkan gejala satu sama lainnya serta menyimpulkan untuk dipakai untuk mencapai tujuan tertentu. Dalam pengembangannya untuk menganalisa satu gejala nyata dengan yang lain diperlukan apa yang didapat dari sience misalnya matematika, sehingga dapat dibedakan dua cara berpikir:

1. Cara fisik, dengan meneliti fenomena yang nyata.
2. Cara ideal atau cara matematis dengan keadaan keadaan nyata diabstrakkan kemudian dianalisa secara matematis dan dibuatkan bentuk umumnya sehingga menjadi model matematika yang berlaku umum. Kemudian bentuk umum ini diterapkan kembali ke keadaan nyata untuk diuji kebenarannya.

Bila telah diuji kebenarannya maka didapat konsep abstrak dari suatu bentuk yang nyata sehingga terbentuklah sience teoritis. Dengan demikian bila mempelajari suatu subjek maka haruslah bisa menjawab pertanyaan-pertanyaan yang timbul dari ahli teknik yang melihat dari sudut-sudut nyata dan ahli fisika yang melihat dari sudut abstrak. Berarti harus dikuasai ide struktur logika dari subjek tersebut. Secara singkat proses ini dapat dijabarkan sebagai berikut:

1. Sebuah sistem fisik merupakan sebuah obyek keingintahuan diharapkan bisa diteliti perilakunya dalam berbagai keadaan.
Contoh: sebuah bandul bergoyang, sebuah benda jatuh dan terpantul.

3. Penalaran matematis diterapkan ke model matematik sehingga didapat rumusan-rumusan matematik dari gejala fisik tersebut.

4. Hasil-hasil matematis diinterpretasikan ke dalam arti fisik.

5. Hasil-hasilnya kalau memangkinkan dibandingkan dengan hasil-hasil penelitian fisik.

Dalam pelaksanaannya yang terakhir ini tidaklah selalu bisa dilaksanakan misalnya dalam fisika inti, as-trafisika yang besarannya sangatlah kecil sehingga tidak mudah diamati atau sangatlah besar, dengan demikian perlu dibedakan antara kebenaran matematis dan kebenaran fisik. Banyak pengembangan-pengembangan yang hanya sampai langkah ke empat, yaitu sampai pada kebenaran matematis yang hasilnya berupa teori. Pengembangan ini merupakan ilmu teoritis, misalnya fisika teori, kimia teori.

Pada pengembangan langkah ke lima yaitu kebenaran fisik didapat dalam ilmu eksperimental misal fisika eksperimental, kimia eksperimental.

Banyak model-model yang dapat diteliti secara eksperimental dengan hasil yang cukup baik untuk keadaan-keadaan tertentu, tetapi ternyata bila diperlakukan secara umum terdapat kesalahan-kesalahan misalnya mekanika Newton yang telah berhasil memajukan ilmu teknik sehari-hari dengan sangat mengagumkan, tetapi ketika diterapkan dalam fenomena skala kecil seperti atom, ternyata gagal, demiki-
an juga jika diterapkan dalam fenomena skala besar, seperti astronomi, ternyata terdapat kesalahan-kesalahan.

Di bawah ini akan diberikan sebuah usaha yang menggunakan suatu gejala fisik yang diabstrakkan secara matematis yang ternyata dapat berlaku umum dalam penerapan fisiknya.

Metode Lagrange dan Hamilton memberikan sebuah perencanaan yang sistematis untuk menuliskan persamaan-persamaan gerak dalam sistem dinamika sebarang sehingga dapat menghindarkan kesulitan-kesulitan dalam mencari perangkat untuk mendapatkan persamaan-persamaan gerak suatu sistem tertentu.

Disamping itu metode Lagrange dan Hamilton memberikan analisis mengenai apakah dinamika itu sebenarnya serta bagaimana sistem-sistem itu bergerak. Meskipun ini mempelajari dalam bentuk persamaan-persamaan diferensial sehingga berupa teori abstrak yang merupakan dunia pelajaran matematika murni, tetapi metode ini berakar pada realitas fisik.

Pada bab II dibahas prinsip Hamilton yang membicarakan persamaan-persamaan gerak alami.

Selanjutnya dalam bab III dibahas penggunaan persamaan gerak alami sampai menjadi himpunan-himpunan gerak koheren dan aksi gelombang yang akhirnya digunakan sebagai dasar mekanika kvantum.

Gerak alami selain dapat dipandang sebagai kurva
dari suatu kejadian ke kejadian lain dapat pula dipandang sebagai suatu titik yang bergerak dalam ruang fase yang dibahas dalam bab IV.

Akhirnya bab V merupakan hasil kesimpulan dari penulisan ini.
BAB I

PERSAMAAN-PERSAMAAN LAGRANGE DAN HAMILTON

1.1. KLASIFIKASI SISTEM DINAMIK

Dalam sistem dinamika terdapat enam klasifikasi yaitu:

- Scleronomic
- Rheonomic
- Conservative
- Nonconservative
- Holonomic
- Nonholonomic

Dalam sistem scleronomic konfigurasi dari sistem diberikan ketika nilai-nilai dari sebuah himpunan koordinat umum q_1, q_2, ..., q_n didapat sistem sistem rheonomic diperlukan untuk menetapkan selang waktu t.

Dengan perkataan lain sebuah sistem scleronomic adalah sistem yang hanya mempunyai kendala-kendala tetap, sedangkan sebuah sistem rheonomic mempunyai kendala-kendala bergerak.

Misalnya:

- sebuah bandul dengan titik beban tetap adalah scleronomic.
- sebuah bandul dengan titik beban dengan gerakan tertentu adalah rheonomic.

Dalam sistem conservative gaya-gaya umum dapat diturunkan dari sebuah energi potensial V, jika tidak demikian sistem ini merupakan sistem nonconservative.

Dalam sistem holonomic dapat diberikan variasi bebas sebarang pada koordinat-koordinat umum tanpa merusak kendala-kendala, sedang dalam sistem nonholonomic
Sistem scleronomic, conservative dan holonomic adalah yang paling sederhana dan biasa disebut sistem sederhana (simple systems). Teori dinamika umum paling cocok untuk sistem sederhana ini tetapi dapat juga dikembangkan untuk semua sistem, misalnya rheonomic, nonconservative dan nonholonomic. Karena tujuannya bukan untuk mempersulit keadaan umum yang berlebihan tetapi untuk memberikan apresiasi bagi metode umum dinamika maka yang akan dibicarakan hanya sistem dinamika sederhana.

1.2. PERSAMAAN LAGRANGE UNTUK SEBUAH PARTIKEL PADA SEBUAH BIDANG.

Sebelum membicarakan persamaan Lagrange harus diketahui terlebih dahulu tentang gaya, kecepatan dan percepatan.

Yang dimaksud dengan gaya yaitu perubahan momentum per satuan waktu atau differensial momentum terhadap waktu \(\frac{d}{dt} mv \).

Yang dimaksud dengan kecepatan yaitu jarak yang ditempuh per satuan waktu atau diferensial koordinat terhadap waktu.

Yang dimaksud dengan percepatan yaitu penambahan kecepatan per satuan waktu.

Untuk mendapatkan percepatan dapat diuraikan sebagai berikut :

Misalnya ada sebuah benda bergerak dengan sumbu \((x, y)\) sebagai sumbu kartesius.

\[v = \text{kecepatan} \]
\[a = \text{percepatan} \]
\[\Delta x = (x_2 - x_1) \]
\[\Delta y = (y_2 - y_1) \]
\[\Delta t = (t_2 - t_1) \]

\[v = \frac{\Delta x}{\Delta t} \quad v = \frac{\Delta y}{\Delta t} \]
\[v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} \quad v = \lim_{\Delta t \to 0} \frac{\Delta y}{\Delta t} \]
\[= \frac{dx}{dt} \quad = \frac{dy}{dt} \]
\[a = \frac{dv}{dt} \quad a = \frac{dv}{dt} \]
\[= \frac{d}{dt} \frac{dx}{dt} = \frac{d}{dt} \frac{dy}{dt} \]
\[= \frac{d^2 x}{dt^2} = \frac{d^2 y}{dt^2} \]
\[= \ddot{x} \quad = \ddot{y} \]

Sehingga partikel beermessa yang bergerak pada sebuah bidang, \(O_{xy} \) sumbu cartesion dan \(X, Y \) komponen gaya yang bekerja pada partikel maka persamaan geraknya adalah:

\[m \ddot{x} = X \]
\[m \ddot{y} = Y \]

Misalnya \(q_1, q_2 \) koordinat kurvilinier maka \((x, y) \) adalah fungsi dari \((q_1, q_2) \) dan dapat ditulis:

\[x = x(q_1, q_2) \]
\[y = y(q_1, q_2) \]

Maka didapat empat turunan parsial yaitu:

\[\frac{\partial x}{\partial q_1} \quad \frac{\partial x}{\partial q_2} \]
\[\frac{\partial y}{\partial q_1} \quad \frac{\partial y}{\partial q_2} \]

Sekarang yang akan dipelajari adalah kinematika dari partikel tersebut, jadi tidak perlu lagi menggunakan persamaan:

\[m \ddot{x} = X \]
\[m \ddot{y} = Y \]
Bila partikel bergerak sebarang maka keempat variabel \((x, y, q_1, q_2)\) merupakan fungsi waktu, sehingga turunan dari
\[
x = x(q_1, q_2) \quad (1.1)
\]
\[
y = y(q_1, q_2)\]
adalah
\[
x = \frac{2x}{\partial q_1} q_1 + \frac{2x}{\partial q_2} q_2 \quad (1.2)
\]
\[
y = \frac{2y}{\partial q_1} q_1 + \frac{2y}{\partial q_2} q_2
\]
dengan \(\dot{q}_1, \dot{q}_2\) adalah laju perubahan posisi.
\(x\) dan \(y\) merupakan fungsi empat buah besaran \((q_1, q_2, \dot{q}_1, \dot{q}_2)\) yang dapat pula ditulis sebagai berikut:
\[
x = f(q_1, q_2, \dot{q}_1, \dot{q}_2) \quad (1.3)
\]
\[
y = f(q_1, q_2, \dot{q}_1, \dot{q}_2)
\]
sehingga didapat delapan turunan parsial yaitu:
\[
\frac{\partial x}{\partial q_1}, \frac{\partial x}{\partial q_2}, \frac{\partial y}{\partial q_1}, \frac{\partial y}{\partial q_2} \quad (1.4)
\]
Dan turunan parsialnya terhadap \(\dot{q}_1\) dan \(\dot{q}_2\) adalah:
\[
\frac{\partial x}{\partial \dot{q}_1} = \frac{\partial x}{\partial q_1} \quad \frac{\partial x}{\partial \dot{q}_2} = \frac{\partial x}{\partial q_2} \quad (1.5)
\]
\[
\frac{\partial y}{\partial \dot{q}_1} = \frac{\partial y}{\partial q_1} \quad \frac{\partial y}{\partial \dot{q}_2} = \frac{\partial y}{\partial q_2}
\]
Hasil ini disebut penghilangan titik atau penghapusan (cancellation of the dots).
Disamping itu didapat pula:
\[
\frac{\partial x}{\partial q_1} \frac{2x}{q_1} + \frac{2x}{q_2} \quad (1.6)
\]
\[\exists x = \frac{\exists^2 x}{\exists q_2} \cdot q_1 + \frac{\exists^2 x}{\exists q_2^2} \cdot q_2 \]

\[\exists y = \frac{\exists^2 y}{\exists q_1} \cdot q_1 + \frac{\exists^2 y}{\exists q_1^2} \cdot q_2 \]

\[\exists y = \frac{\exists^2 y}{\exists q_2} \cdot q_1 + \frac{\exists^2 y}{\exists q_2^2} \cdot q_2 \]

dan \(\exists x, \exists q_1 \) dan \(\exists x, \exists q_2 \) masing-masing merupakan fungsi \(q_1 \)
dan \(q_2 \) dan ini juga merupakan fungsi \(t \), oleh
sebab itu:

\[\frac{d}{dt} \exists x = \frac{\exists^2 x}{\exists q_1^2} \cdot q_1 + \frac{\exists^2 x}{\exists q_1 q_2} \cdot q_2 \]

\[\frac{d}{dt} \exists x = \frac{\exists^2 x}{\exists q_2^2} \cdot q_1 + \frac{\exists^2 x}{\exists q_2 q_1} \cdot q_2 \]

Membandingkan ini dengan persamaan (1.6) di atas
tampak hasil yang sama didapat dari persamaan

\[\dot{x} = \exists x \cdot q_1 + \exists x \cdot q_2 \]

\[\dot{y} = \exists y \cdot q_1 + \exists y \cdot q_2 \]
yaitu

\[\frac{d}{dt} \exists x = \exists x \cdot q_1 + \exists x \cdot q_2 \]

\[\frac{d}{dt} \exists x = \exists x \cdot q_1 + \exists x \cdot q_2 \]

\[\frac{d}{dt} \exists y = \exists y \cdot q_1 + \exists y \cdot q_2 \]

\[\frac{d}{dt} \exists y = \exists y \cdot q_1 + \exists y \cdot q_2 \]

Hasil ini disebut "saling tukar antara \(d \) dan \(\exists \)".
Cara ini dan penghilangan titik dipakai terus dalam
metode Lagrange.
Dengan tetap menganggap partikel mempunyai gerak se-
barang dapat dituliskan energi kinetiknya sebagai
berikut:

\[T = \frac{1}{2} m \left(\dot{x}^2 + \dot{y}^2 \right) \]

Dengan mensubstitusikan \(\dot{x} \) dan \(\dot{y} \) didapat:

\[T = \frac{1}{2} m \left[\left\{ \left(\frac{\partial \mathbf{X}}{\partial q_1} \right)^2 \dot{q}_1^2 + 2 \left(\frac{\partial \mathbf{X}}{\partial q_1} \right) \left(\frac{\partial \mathbf{X}}{\partial q_2} \right) \dot{q}_1 \dot{q}_2 \right\} \right. \\
\left. + \left(\frac{\partial \mathbf{X}}{\partial q_2} \right)^2 \dot{q}_2^2 \right]\]

Dapat dilihat \(T \) merupakan fungsi \(q_1, q_2, \dot{q}_1, \dot{q}_2 \) yang dapat ditulis:

\[T = T \left(q_1, q_2, \dot{q}_1, \dot{q}_2 \right) \]

Sebenarnya fungsi ini merupakan fungsi kwadrat dari \(\dot{q}_1 \) dan \(\dot{q}_2 \) sehingga

\[T = \frac{1}{2} m \left(a \dot{q}_1^2 + 2h \dot{q}_1 \dot{q}_2 + b \dot{q}_2^2 \right) \]

dengan \(a, h, b \) fungsi \(q_1, q_2 \)

Dari \(T = \frac{1}{2} m \left(\dot{x}^2 + \dot{y}^2 \right) \) dapat dicari

\[\frac{\partial T}{\partial q_1} = m \dot{x} \frac{\partial \mathbf{X}}{\partial q_1} + m \dot{y} \frac{\partial \mathbf{X}}{\partial q_1} \quad (1.9) \]

\[\frac{\partial T}{\partial q_2} = m \dot{x} \frac{\partial \mathbf{X}}{\partial q_2} + m \dot{y} \frac{\partial \mathbf{X}}{\partial q_2} \]

Dengan menghilangkan titik didapat

\[\frac{\partial T}{\partial \dot{q}_1} = m \dot{x} \frac{\partial \mathbf{X}}{\partial q_1} + m \dot{y} \frac{\partial \mathbf{X}}{\partial q_1} \quad (1.10) \]

\[\frac{\partial T}{\partial \dot{q}_2} = m \dot{x} \frac{\partial \mathbf{X}}{\partial q_2} + m \dot{y} \frac{\partial \mathbf{X}}{\partial q_2} \]

Dengan menggunakan differentiasi persamaan ini terhadap \(\ddot{t} \) dan mengganti \(\ddot{d} \) dan \(\ddot{d} \) didapat
\[
\frac{d}{dt} \mathcal{E}_T = \begin{align*}
&= m \cdot \frac{\partial x}{\partial q_1} \dot{q}_1 + m \cdot \frac{\partial y}{\partial q_1} \dot{q}_1 + m \cdot \frac{\partial x}{\partial q_2} \dot{q}_2 + m \cdot \frac{\partial y}{\partial q_2} \dot{q}_2 \\
&\quad + m \cdot \frac{\partial \mathcal{E}_y}{\partial q_1} \\
&\quad + m \cdot \frac{\partial \mathcal{E}_y}{\partial q_2} \\
&\text{(1.11)}
\end{align*}
\]

Persamaan ini dikurangi dengan persamaan (1.9) didapat:
\[
\frac{d}{dt} \mathcal{E}_T - \mathcal{C} = m \cdot \frac{\partial x}{\partial q_1} \dot{q}_1 + m \cdot \frac{\partial y}{\partial q_1} \dot{q}_1 \\
\frac{d}{dt} \mathcal{E}_T - \mathcal{C} = m \cdot \frac{\partial x}{\partial q_2} \dot{q}_2 + m \cdot \frac{\partial y}{\partial q_2} \dot{q}_2 \\
\text{(1.12)}
\]
Setiap perpindahan sebarang partikel sebanding dengan pertambahan \(q_1 \times q_2 \) dalam koordinat \(q_1, q_2 \).
Hubungan pertambahan dalam \(x \) dan \(y \) adalah
\[
\delta x = \frac{\partial x}{\partial q_1} \delta q_1 + \frac{\partial x}{\partial q_2} \delta q_2 \\
\delta y = \frac{\partial y}{\partial q_1} \delta q_1 + \frac{\partial y}{\partial q_2} \delta q_2 \\
\text{(1.13)}
\]
Sedangkan usaha yang dilakukan oleh gaya-gaya dalam perpindahan ini adalah
\[
\delta W = X \delta x + Y \delta y \\
\text{(1.14)}
\]
mafa didapat
\[
\delta W = X \left(\frac{\partial x}{\partial q_1} \delta q_1 + \frac{\partial x}{\partial q_2} \delta q_2 \right) + Y \left(\frac{\partial y}{\partial q_1} \delta q_1 + \frac{\partial y}{\partial q_2} \delta q_2 \right)
\]
\[\xi_W = (x \frac{\partial x}{\partial q_1} + y \frac{\partial y}{\partial q_1}) \xi q_1 + (x \frac{\partial x}{\partial q_2} + y \frac{\partial y}{\partial q_2}) \xi q_2 \]

atau

\[\xi_W = q_1 \xi q_1 + q_2 \xi q_2 \quad (1.15) \]

dengan

\[q_1 = x \frac{\partial x}{\partial q_1} + y \frac{\partial y}{\partial q_1} \quad (1.16) \]

\[q_2 = x \frac{\partial x}{\partial q_2} + y \frac{\partial y}{\partial q_2} \]

Kemudian dibawa ke persamaan gerak

\[x = m \ddot{x} \]
\[y = m \ddot{y} \]

maka didapat

\[\frac{d}{dt} \frac{\partial T}{\partial q_1} - \frac{\partial T}{\partial q_1} = x \frac{\partial x}{\partial q_1} + y \frac{\partial y}{\partial q_1} \quad (1.17) \]

\[\frac{d}{dt} \frac{\partial T}{\partial q_2} - \frac{\partial T}{\partial q_2} = x \frac{\partial x}{\partial q_2} + y \frac{\partial y}{\partial q_2} \]

sehingga

\[\frac{d}{dt} \frac{\partial T}{\partial q_1} - \frac{\partial T}{\partial q_1} = q_1 \quad (1.18) \]

\[\frac{d}{dt} \frac{\partial T}{\partial q_2} - \frac{\partial T}{\partial q_2} = q_2 \]

ini merupakan persamaan gerak sebuah partikel pada sebuah bidang, dengan:

\[q_1, q_2 \]: koordinat kurwilinier sebarangan.
\[T \]: energi kinetik (dinyatakan sebagai fungsi dari \(q_1, q_2, \dot{q}_1, \dot{q}_2 \))

Persamaan ini disebut "Persamaan-persamaan gerak La-
Bila sistemnya conservative dengan energi potensial

\[V \text{ maka: } \mathcal{L} = - \mathcal{E} \quad (1.19) \]

\[q_1 = - \frac{\partial V}{\partial q_1} \]

\[q_2 = - \frac{\partial V}{\partial q_2} \]

\(V \) merupakan fungsi dari \(q_1, q_2 \).

Untuk menulis persamaan gerak LaGrange secara sempurna maka akan sampai pada definisi fungsi LaGrange yaitu:

\[L = T - V \]

Selanjutnya \(L \) merupakan simbol dari LaGrange yang kadang-kadang disebut sebagai energi kinetis. Perlu diketahui bahwa \(L \) adalah sebuah fungsi yang dapat ditulis sebagai:

\[L = L (q_1, q_2, \dot{q}_1, \dot{q}_2) \]

dan turunan parsialnya adalah:

\[\frac{\partial L}{\partial q_1} = \frac{\partial T}{\partial \dot{q}_1} \]

\[\frac{\partial L}{\partial \dot{q}_1} = \frac{\partial T}{\partial \dot{q}_1} \]

\[\frac{\partial L}{\partial q_2} = \frac{\partial T}{\partial \dot{q}_2} \]

\[\frac{\partial L}{\partial \dot{q}_2} = \frac{\partial T}{\partial \dot{q}_2} \]

sehingga persamaan LaGrange-nya dapat ditulis:

\[\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_1} \right) - \frac{\partial L}{\partial q_1} = \dot{q}_1 \]

\[\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_2} \right) - \frac{\partial L}{\partial q_2} = \dot{q}_2 \]

\[\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_1} \right) - \left(\frac{\partial L}{\partial q_1} + \frac{\partial V}{\partial q_1} \right) = - \frac{\partial V}{\partial q_1} \]

\[\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_2} \right) - \left(\frac{\partial L}{\partial q_2} + \frac{\partial V}{\partial q_2} \right) = - \frac{\partial V}{\partial q_2} \]

\[\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_1} \right) - \frac{\partial L}{\partial q_1} = 0 \quad \text{.........(a)} \]
\[
\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_2} - \frac{\partial L}{\partial q_2} = q_2
\]
\[
\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_1} - \frac{\partial L}{\partial q_1} = 0 \quad \text{(a)}
\]
\[
\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_2} - \frac{\partial L}{\partial q_2} = 0 \quad \text{(b)}
\]

(a) dan (b) :

\[
\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_1} - \frac{\partial L}{\partial q_1} = 0 \quad \text{(1.21)}
\]

Persamaan-persamaan Lagrange.

Dengan demikian telah didapat gambaran sederhana tentang sebuah partikel yang bergerak pada sebuah bidang yang dihasilkan oleh pemikiran secara sistematis dari metode umum dinamika.

Untuk mendapatkan persamaan gerak setiap koordinat kurvilinear hanya perlu diingat satu fungsi

\[L (q_1, q_2, \dot{q}_1, \dot{q}_2) \]

kemudian mengoperasikannya secara biasa.

1.3. PERSAMAAN HAMILTON

Pada bagian ini akan dibicarakan sebuah sistem yang mengikuti persamaan Lagrange dalam bentuk :

\[
\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_1} - \frac{\partial L}{\partial q_1} = 0 \quad \text{(1.22)}
\]

L adalah fungsi Lagrange dari \(n \) besaran \(q \), turunan dari \(q \) terhadap \(t \) dan \(t \) itu sendiri.
diri, ditulis:

\[L = L (q, \dot{q}, t) \]

Spekifikasi ini termasuk sistem dinamika sederhana tertentu.

Di sini terdapat dua ketentuan yaitu:

1. \(L \) tidak merupakan bentuk kwadrat dalam kecepatan - kecepatan umum (seperti biasanya dalam sistem dinamika sederhana).
2. \(t \) diikutkan sebagai argument tambahan dalam \(L \).

1.4. PERSAMAAN HAMILTON DAN PERSAMAAN GERAK DALAM BENTUK KANONIK.

Nyatakan:

\[p_\rho = \frac{\partial L}{\partial \dot{q}_\rho} \quad (1.23) \]

dengan \(n \) besaran \(p \) adalah momenta umum.

Dalam persamaan ini \(p \) dinyatakan sebagai fungsi \(q, \dot{q} \), dan \(t \). Persamaan sebanyak \(n \) ini akan diselesaikan untuk mendapatkan \(\dot{q}_\rho \) dan \(\ddot{q}_\rho \) dinyatakan dalam \(q, p, t \). Maka \(L \) sendiri dapat dinyatakan sebagai fungsi dari \(q, p \), dan \(t \). Untuk menyatakan \(L \) dalam \(q, p, t \) besaran \(H \) didefinisikan sebagai:

\[H = \sum_{\rho=1}^{n} \dot{q}_\rho \frac{\partial L}{\partial \dot{q}_\rho} - L \quad (1.24) \]

akan digunakan untuk menyatakan \(L \) dalam \(q, p, t \). Besaran \(H \) ini disebut fungsi Hamilton, yang ditulis sebagai:

\[H = H (q, p, t) \]

dalam sistem dinamika sederhana dapat ditulis:

\[L' = T (q, \dot{q}) - V (q) \quad (1.25) \]
\[\sum_{\rho=1}^{n} \dot{q}_\rho \mathcal{J}_{T \rho} = 2 T \quad (1.26) \]

sehingga:
\[H = 2 T - (T - V) = T + V \quad (1.27) \]

Ini adalah cara yang tercepat untuk menghitung \(H \) yang tentunya harus digunakan:
\[p_\rho = \frac{\mathcal{Q}_{L}}{\mathcal{O}} q_\rho \]

untuk menyatakkannya dalam bentuk \(H(q, p) \).

Sekarang dihubungkan turunan parsial \(L(q, \dot{q}, t) \) dengan turunan parsial \(H(q, p, t) \).

\[p = \frac{\mathcal{Q}_{L}}{\mathcal{O}} q_\rho \]

merupakan hubungan antara \(L \) dan \(H \) yang dikenal sebagai himpunan \(n \) buah persamaan yang menghubungkan besaran-besaran sebanyak \(3n + 1 \), yaitu \(q_\rho, \dot{q}_\rho, p_\rho \) dan \(t \).

\(q_\rho \) dianggap sebagai turunan dari \(\frac{dq_\rho}{dt} \) sehingga
\[H = \sum_{\rho=1}^{n} \dot{q}_\rho \mathcal{J}_{T \rho} - L \]
dapat ditulis
\[H = \sum_{\rho=1}^{n} \dot{q}_\rho p_\rho - L \quad (1.28) \]

Kemudian diberi variasi besaran \(q_\rho, \dot{q}_\rho, p_\rho, t \) di dapat:
\[\delta H = \sum_{\rho=1}^{n} p_\rho \delta q_\rho + \sum_{\rho=1}^{n} \dot{q}_\rho \delta p_\rho - \]
\[\sum_{\rho=1}^{n} \mathcal{J}_{L \rho} \delta \dot{q}_\rho \delta q_\rho - \sum_{\rho=1}^{n} \mathcal{O} \delta q_\rho \delta t \quad (1.29) \]

suku I dan III pada sisi kanan saling meniadakan (1.18).
Deferensial-deferensial sisa \(q_p, \dot{q}_p, \dot{t} \), sejumlah \(2n + 1 \) bebas dan sebarang.

Variasi \(\dot{q}_p \) tidak timbul lagi karena saling meniadakan sehingga pertambahan besaran \(q_p, \dot{q}_p, p_p \) dan \(t \) memenuhi

\[
\rho = \frac{\partial L}{\partial \dot{q}_p}
\]

Oleh sebab itu:

\[
\begin{align*}
\partial H &= \partial L \\
\partial q_p &= \partial q_p \\
\partial H &= \partial p_p \\
\partial p_p &= \partial q_p \\
\partial t &= \partial t
\end{align*}
(1.30)

Akibat dari persamaan ini:

1. Bila \(t \) tidak terdapat secara eksplisit dalam \(L \) maka tidak terdapat juga dalam \(H \).

2. Dari \(n \) buah persamaan Lagrange didapat \(2n \) buah persamaan gerak yaitu:

\[
\begin{align*}
\dot{q}_p &= \partial H \\
\dot{p}_p &= -\partial H
\end{align*}
(1.31)

Dan ini merupakan persamaan-persamaan gerak Hamilton yang dikenal secara umum sebagai persamaan-persamaan bentuk kanonik (sederhana).

Penyelesaian persamaan-persamaan Hamilton didapat bila koordinat umumnya \((q_p) \) dan momenta umumnya \((p_p) \) untuk \(t = 0 \) telah ditetapkan.

Persamaan ini dapat juga ditulis dalam bentuk:

\[
\frac{d q_p}{\partial H/\partial p_p} = \frac{d p_p}{\partial H/\partial q_p} = dt
(1.32)
\]

1.5. PENGABAIAN KOORDINAT

Misalkan salah satu koordinat \((q_l) \) diabaikan.
terhadap H sehingga:

$$\frac{\partial H}{\partial q_i} = 0$$

(1.33)

maka $p_1 = 0$ dan p adalah sebuah konstanta dari gerak, misalnya $p_1 = a_1$. Dengan menggantikan p_1 dengan a_1 dan mengurangi persamaan-persamaan sebanyak $2n$ yaitu dua persamaan dengan $p = 1$ didapat sebuah himpunan persamaan kanonik untuk $2(n-1)$ besar:

$q_2, q_3, \ldots, q_n, p_2, p_3, \ldots, p_n$

Dalam keadaan seperti ini jumlah tingkat kebebasan berkurang tanpa kehilangan bentuk kanonik dari persamaan gerak. Koordinat yang terabaikan q_1, didapat dari persamaan $q_1 = \frac{\partial H}{\partial p_1}$.

Bila terdapat m koordinat terabaikan, maka jumlah tingkat kebebasan berkurang m. Sehingga terlihat bahwa $\frac{\partial H}{\partial q_1} = 0$ ekivalen dengan $\frac{\partial L}{\partial q_1} = 0$.

1.6. SISTEM CONSERVATIVE

Telah didefinisikan bahwa sebuah sistem conservative adalah sebuah sistem yang mempunyai energi potensial V, dan sistem dinamika lebih umum dinyatakan oleh fungsi tunggal $L(q, q', t)$ atau fungsi tunggal $H(q, p, t)$. Fungsi V tidak timbul lagi (meskipun boleh mengumakannya dalam bentuk Lagrange atau Hamilton) dan yang dibutuhkan definisi sistem conservative.

Dengan menggunakan persamaan :

$$\frac{\partial H}{\partial q_i} = -\frac{\partial L}{\partial q_i}$$
\[\frac{\partial H}{\partial p} = q \]

\[\frac{\partial H}{\partial q} = -\frac{\partial L}{\partial t} \]

maka persamaan-persamaan:

\[\frac{\partial L}{\partial t} = 0 \text{ dan } \frac{\partial H}{\partial t} = 0 \quad (1.34) \]

ekivalen, sehingga dapat dikatakan sebuah sistem adalah conservative bila syarat di atas dipenuhi atau dengan kata lain bila \(L \) atau \(H \) tidak tergantung secara eksplisit pada \(t \).

Dengan menggunakan persamaan kanonik

\[\dot{q}_\rho = \frac{\partial H}{\partial p_\rho} \]

\[\dot{p}_\rho = -\frac{\partial H}{\partial q_\rho} \]

didapat:

\[H = \sum_{\rho=1}^{n} \frac{\partial H}{\partial q_\rho} \dot{q}_\rho + \sum_{\rho=1}^{n} \frac{\partial H}{\partial p_\rho} \dot{p}_\rho + \frac{\partial H}{\partial t} \]

\[= \frac{\partial H}{\partial t} \quad (1.35) \]

(1.35) akan hilang bila \(\frac{\partial L}{\partial t} = 0 \quad \frac{\partial H}{\partial t} = 0 \) dipenuhi, karena sebuah sistem conservative, Hamilton \(H \) adalah sebuah gerakan konstan yang nilainya ditentukan oleh kondisi awal.

Ini sesuai dengan penerapan tertentu pada sebuah sistem sederhana tetapi sekarang ditunjukkan dalam bentuk yang lebih umum. Meskipun sistem dinamik yang diberikan merupakan konsep energi kinetik atau sedikitnya hanya menjadi latar belakang, tapi akan terlihat bahwa gerak bukan energi merupakan konsep dasar dalam dinamika umum.