RINGKASAN

Kebutuhan minyak bumi sebagai sumber energi semakin meningkat namun pengolahannya memiliki beberapa kendala. Salah satu kendala disebabkan katalis zeolit kurang mampu merengkak fraksi berat minyak karena kecilnya pori. Di sisi lain lempung terpillar silika memiliki basal spacing tinggi, luas permukaan besar dan stabil pada temperatur tinggi. Tujuan penelitian adalah mensintesis lempung terpillar silika yang dapat dimanfaatkan sebagai pengemban dan katalis hidrorengkah minyak bumi.

Sintesis katalis lempung terpillar silika (SiO₂) melalui interkalasi TEOS (tetraetilortosilikat) dan surfaktan CTMA-Br (setiltrimetilamonium bromida) dan kosurfaktan dodesilamin di daerah antar lapis lempung telah dilakukan. Hasil sintesis dikarakterisasi meliputi : basal spacing dan kristalinitas dengan difraksi sinar X, luas permukaan dengan BET dan uji keasaman dengan adsorpsi piridin. Uji aktivitas katalitik lempung terpillar hasil sintesis dilakukan terhadap reaksi hidrorengkah fraksi 200-300°C minyak bumi. Analisis fase cair minyak bumi hasil perengkahan dilakukan dengan menggunakan kromatografi gas.

Kalsinasi lempung terinterkalasi TEOS pada temperatur 600°C menghasilkan lempung terpillar silika dengan basal spacing 28,31Å dan luas permukaan 336,52 m²/g. Munculnya puncak dan shoulder XRD hingga temperatur 800°C menunjukkan lempung terpillar silika tetap stabil dalam temperatur tinggi. Lempung terpillar tanpa dan dengan tereban nickle memiliki situs asam Bronsted dan Lewis yang baik. Aplikasi sebagai katalis hidrorengkah menunjukkan lempung terpillar silika (SiO₂) mampu mengkonversi fraksi destilat 200-300°C minyak bumi pada temperatur 350°C. Semakin besar nickle yang tereban semakin besar aktivitas katalisnya dan optimum pada konsentari nickle yang tereban 2%.
SUMMARY

Crude oil demands as source energy always raises but its processing has some constrains. One constraint caused by zeolyt catalyst which not enough able to convert heavy fraction of crude oil because its small pores. On other side silica pillared clay has high basal spacing, large surface area, and still stable at high temperature. The aims of research is to synthesis silica pillared clay which can be applied as support catalyst and catalyst of crude oil.

Synthesis silica pillared clay by intercalation of TEOS (tetraethylorthosilicate) and surfactant CTMA-Br (Cetyltrimethylammonium Bromide) and dodesylamine has been conducted. Product of synthesis was identified including : basal spacing and crystalinity by X-ray diffraction, surface area measurement by BET and acidity assay by piridine adsorption. Activity of catalyst pillared clay was tested for crude oil hydrocracking, fraction 200-300°C. The liquid product of reaction was analyzed by gas cromatography.

Calcination at 600°C of TEOS intercalation clay resulted silica pillared clay with basal spacing 28,31Å and surface area 336,52 m²/g. Peak and shoulder of XRD pattern show that silica pillared clay still stable at high temperature. Silica pillared clay with and without nickel impregnant also show good Bronsted and Lewis acid. Application as hydrocracking catalyst show that silica pillared clay able to convert heavy fraction of crude oil at 350°C. More nickel impregnate at silica pillared clay, activity of catalyst become greater and optimum at nickel concentration 2%.