BAB III
METODE PENELITIAN

Selanjutnya penyanga dan katalis dikarakterisasi dengan TG-DTA, adsorpsi gas N$_2$, EDX (Energy Dispersive X-Ray), IR dan difraksi sinar-X, masing-masing untuk mengetahui perubahan energi dan berat akibat pengaruh pemanasan, luas permukaan, komposisi penyanga, ikatan molekul penyanga dan fasa kristal.

3.1 Peralatan dan bahan:

3.2.1 Peralatan:

- Quanta adsorb, Quata Chrome U.S.A,
- Viskometer Brooke Field, XRD Xpert Philips,
- SEM 515/EDX PV 9900, Philips Netherland,
- Reaktor hidrogenasi Vinci Technologies, Ruel vol 0,21 H,
- STA Setaram TAG Z4S, France,
- Tube Furnace 21100 Thermolyne,
- alat-alat gelas
- oven
- timbangan analitik.

3.2.2 Bahan-bahan:
- cairan tetraetilortosilikat, Si(O\textsubscript{2}H\textsubscript{5})\textsubscript{4}
- cairan titanium n-propoksida Ti(O\textsubscript{3}H\textsubscript{7})\textsubscript{4}
- etanol, p.a.
- HNO\textsubscript{3}
- aquades
- asam stearat padat, SAF 1865 (Beed)
- gas helium (He) UHP
- gas oksigen (O\textsubscript{2}) UHP
- nitrogen cair
- gas nitrogen (N\textsubscript{2})
- larutan CCl\textsubscript{4}
- larutan ICl dalam KI (wijs)
- larutan KI 10 %
- larutan Na\textsubscript{2}S\textsubscript{2}O\textsubscript{5} 0,1 N
- larutan heksan
- minyak kelapa sawit.
3.2 Variabel penelitian

3.2.1 Proses Pembuatan Penyangga dan Katalis:

a. Variabel konstan: pH larutan gel, konsentrasi larutan \(\text{Si(OC}_2\text{H}_3\text{)}_4 \), \(\text{Ti(OC}_3\text{H}_7\text{)}_4 \), etanol, air dan \(\text{HNO}_3 \), kecepatan alir gas \(\text{H}_2 \), He, He/Ne, suhu kalsinasi dan reduksi, waktu kalsinasi dan reduksi, dan berat logam Ni.

b. Variabel yang dinilai: perubahan berat dan energi gel saat pemanasan, luas permukaan penyangga dan katalis, komposisi unsur penyangga, dan kristalinitas katalis dan penyangga.

c. Variabel bebas: konsentrasi asam stearat yang ditambahkan ke dalam penyangga.

3.2.2 Uji Aktivitas:

a. Variabel konstan : Kecepatan alir dan tekanan gas \(\text{H}_2 \)

b. Variabel yang dinilai: nilai bilangan iod

c. Variabel bebas : waktu reaksi hidrogenasi

3.3 Cara Kerja

3.3.1 Preparasi penyangga \(\text{SiO}_2\)-\(\text{TiO}_2 \)

- Cairan tetraetil ortosilikat dilarutkan dalam campuran \(\text{HNO}_3 \), \(\text{H}_2\text{O} \), dan etanol dengan cara diteteskan dengan kecepatan tetes 0,05ml/detik, kemudian ditambahkan cairan titanium n-propoksida yang dilarutkan dalam
etanol dengan perbandingan molekul masing-masing SiO\textsubscript{2}/TiO\textsubscript{2} yaitu 0,8/0,2, H\textsubscript{2}O/alkoksida yaitu 2/1, etanol/alkoksida yaitu 12/1. Campuran terus diaduk selama 1 jam.

- Sebelum menjadi gel, viskositas larutan dihitung sampai berubah menjadi gel. Larutan membentuk gel selama 31 jam.

- Gel yang terbentuk kemudian ditambah dengan asam stearat dengan konsentrasi 0 M; 0,25 M; 0,65 M; 1,08 M; dan 1,5M. Gel hasil disebut dengan gel termodifikasi. Gel termodifikasi didiamkan selama 24 jam pada suhu kamar.

- Gel termodifikasi dipanaskan dalam oven untuk meghilangkan air. Serbuk kering kemudian dianalisa dengan TG-DTA.

- Gel kering dikalsinasi dalam furnace pada suhu 500 \textdegree C selama 2 jam.

- Hasil yang diperoleh berturut-turut adalah P\textsubscript{0}; P\textsubscript{0,25}; P\textsubscript{0,65}; P\textsubscript{1,0}; dan P\textsubscript{1,5}

- Penyangga SiO\textsubscript{2}-TiO\textsubscript{2} kemudian dikarakterisasi dengan adsorpsi gas N\textsubscript{2}, IR, EDX dan difraksi sinar-X.

3.3.2 Pembuatan katalis Ni/SiO\textsubscript{2}-TiO\textsubscript{2}

- Pembuatan katalis Ni/SiO\textsubscript{2}-TiO\textsubscript{2} dilakukan dengan metode impregnasi. Untuk membuat 1 gram katalis Ni 20% dibutuhkan 0,8 gram penyanga dan 4 ml aquades.
- Suspensi penyanga dan aquades diteskan larutan Ni(NO₃)₄·6H₂O 0,01 N sebanyak 7 ml dengan kecepatan penambahan 0,05 ml/detik.

3.3.3 Karakterisasi penyanga dan katalis

a. Analisa dengan adsorpsi gas N₂

Penentuan luas permukaan sampel penyanga dan katalis, diawali dengan proses degassing, yaitu sampel sebanyak 0,01-0,05 gram dimasukkan ke dalam sel sampel selanjutnya didegasi dengan mengalirkan gas He pada suhu 200 °C selama 30 menit, kemudian didinginkan pada suhu ruangan. Sel sampel kemudian dipindahkan ke holder sampel. Adsorpsi dilakukan dengan merendam sampel ke dalam nitrogen cair. Setelah adsorpsi, dilakukan desorpsi dengan mengeluarkan tabung sampel dari nitrogen cair, dan mencatat volume desorpsi yang tertera pada alat. Sejumlah tertentu uap nitrogen diinjeksikan pada aliran gas, sampai luas puncak mendekati area desorpsi.
b. Analisa difraksi sinar-X

3.3.4 Uji Aktivitas

Uji aktivitas katalis Ni/SiO2-TiO2 dilakukan pada reaksi hidrogenasi minyak kelapa sawit.

- Minyak kelapa sawit dicampur dengan 0,2 gram katalis K0,65 dan dipanaskan dalam reaktor rendam.
- Setelah suhu reaktor mencapai 180 °C dilakukan sampling interval waktu 1,5 jam yaitu pada 0 menit, 30 menit, 60 menit, 90 menit. Hasil kemudian disebut dengan H0, H30, H60, dan H90.
- Kemudian gas H2 dialirkan pada tekanan 15 bar. Selanjutnya sampling dilakukan pada H30, H60 dan H90.
- Hasil sampling, H0, H30, H60 dan H90 dilarutkan dalam heksan secukupnya, kemudian disentrifus dengan kecepatan 1200 rpm/10 menit.
• Analisa bilangan iod terhadap sampel-sampel tersebut dilakukan dengan metode Wijs. Sebanyak 0,1 gram sampel H0, H30, H60 dan H90 diambil dan dicampur dengan 10 ml larutan CCl4 dan 10 ml larutan Wijs. Selanjutnya disimpan dalam lemari gelap selama 1 jam.

• Larutan ditambah dengan 10 ml larutan KI 10 % dan 50 ml aquades.

• Setelah itu larutan dititasi dengan larutan Na2S2O4 0,1 N sampai larutan merah berubah menjadi kuning, kemudian ditambah dengan indikator amilum dan dititrasi kembali dari larutan berwarna biru berubah menjadi bening.