BAB I
PENDAHULUAN

1.1. Latar Belakang Penelitian

Tumbuhan merupakan salah satu sumber daya alam yang mempunyai banyak potensi untuk dapat dimanfaatkan. Salah satunya adalah sumber bahan kimia yang dapat dimanfaatkan oleh manusia guna memenuhi kebutuhannya, seperti bahan makanan, obat-obatan, zat pewarna, zat pewangi dan sebagainya (Achmad, 1986).

Tumbuhan mengandung beraneka ragam senyawa kimia baik dalam akar, batang, buah dan daun. Masing-masing jenis tumbuhan mengandung senyawa-senyawa tertentu yang merupakan ciri khas dari suatu kelompok tumbuhan. Dalam rangka pemanfaatan dan pendataan potensi sumber daya alam hayati tersebut, perlu dilakukan eksplorasi dan identifikasi senyawa-senyawa kimia bahan alam yang terkandung di dalamnya.

Studi dalam bidang kimia organik bahan alam dapat mempunyai aspek yang luas, antara lain penelitian terhadap struktur dan biosintesis, isolasi dan identifikasi senyawa-senyawa baru yang berkhasiat, serta studi produksi senyawa tertentu. Penelitian tanaman obat Indonesia dewasa ini telah dilakukan secara intensif dan terpadu. Penelitian tersebut terfokus pada penemuan senyawa bioaktif, karena dengan ditemukannya senyawa bioaktif dalam suatu tanaman, maka senyawa tersebut dimungkinkan dapat dikembangkan sebagai bahan baku obat (Kardono, 1996). Salah satu jenis tanaman yang diketahui mengandung senyawa bioaktif adalah tanaman pasak bumi (Eurycoma longifolia Jack) yang
termasuk dalam famili Simarubaceae. Akar dari tumbuhan pasak bumi telah dimanfaatkan kandungan zat aktifnya terutama sebagai obat anti malaria, anti disentri, anti piretik, dan afrodisiaik (Hadiah, 1991) sehingga berpotensi untuk diteliti kandungan zat aktifnya.


Penemuan senyawa bioaktif fraksi non polar dan semi polar dari pasak bumi perlu juga dilakukan mengingat masih banyak senyawa-senyawa yang mempunyai aktivitas belum ditemukan.

1.2. Perumusan Masalah

Informasi fitokimia tentang profil pasak bumi masih sangat terbatas terutama kandungan kimia dalam fraksi non polar dan semi polar. Ekstrak pasak bumi mengandung alkaloid, flavonoid, steroid dan triterpen, sehingga dalam penelitian ini akan dilakukan identifikasi golongan steroid dalam fraksi non polar dan semi polar.

Metode Liebermann-Burchard dilakukan untuk mengetahui kandungan steroid dalam fraksi n-heksana dan kloroform. Ekstraksi kandungan steroid menggunakan metode sokletasi yang dilanjutkan dengan pemisahan kromatografi kolom.
Senyawa steroid yang diperoleh diidentifikasi dengan Kromatografi Lapis Tipis dan Kromatografi Gas-Spektrometer Massa.

1.3 Tujuan dan Manfaat Penelitian

Penelitian ini bertujuan untuk mengidentifikasi senyawa steroid yang terkandung dalam fraksi non polar (n-heksana) dan fraksi polar (kloroform) dari tanaman pasak bumi. Hasil penelitian ini dapat menambah informasi tentang profil fitokimia dari tanaman pasak bumi dan merupakan langkah awal dari beberapa penelitian yang diharapkan bermanfaat bagi disiplin ilmu yang terkait.