BAB III
METODOLOGI PENELITIAN

Prinsip metode penelitian ini adalah preparasi katalis Ni-zeolit dilakukan dengan cara pertukaran ion. Proses pertukaran ion dilakukan terhadap zeolit yang sudah didialumina menggunakan HCl 6N, faktor yang akan ditinjau adalah pengaruh konsentrasi ion amonium terhadap banyaknya logam Ni yang dapat masuk ke dalam rongga zeolit. Katalis tersebut kemudian dikarakterisasi sifat keasaman dengan gravimetri, kadar logam Ni dengan AAS dan adsorpsi NH₃ dengan FTIR. Reaksi hidrogenasi benzena menjadi sikloheksana dilakukan untuk mengetahui aktivitas katalis dan diuji dengan kromatografi gas.

3.1. Peralatan dan Bahan

3.1.1 Peralatan

Peralatan yang digunakan adalah: alat gelas (erlenmeyer, batang pengaduk, corong, gelas arloji, gelas ukur dan lain-lain), neraca analitik mettler AT 200, *orbital shakker*, oven vakum, pH meter, tungku Candradimuka, reaktor Puruhita, FTIR, AAS, GC.

3.1.2. Bahan

Bahan yang digunakan adalah : logam Ni p.a (merck), HNO₃ p.a.(merck), NH₄NO₃ p.a. (merck), HCl p.a. (merck), Benzena p.a (merck), gas N₂ dan H₂ dari PT Aneka Gas Semarang, Zeolit alam asal Bayah, akuades, dan amonia 21%.
3.2. Variabel Penelitian

1. Variabel yang dikonstankan
 Kadar logam Ni, massa, jenis dan ukuran zeolit, waktu dan suhu pertukaran ion, waktu dan suhu pengeringan, waktu dan suhu kalsinasi, laju alir gas N₂ dan gas H₂.

2. Variabel bebas
 Konsentrasii larutan NH₄NO₃ yang digunakan untuk proses pertukaran ion tahap I.

3. Variabel yang dinilai
 Keasaman katalis dan kadar logam Ni dalam katalis.

3.3. Cara Kerja

3.3.1. Preparasi Katalis

- Dealumnasi zeolit

 Sebanyak 400 gram zeolit alam asal Bayah berukuran 1 mm ditambah 1 L HCl 6N dididihkan selama 3 jam, didiamkan satu malam dinetralkan dengan akuades sebanyak 30 L dan dikeringkan pada suhu 100 °C-120 °C selama 2 jam.

- Pertukaran ion Tahap I

 Disediakan 5 labu erlenmeyer dan diisi dengan 40 g zeolit terdealuminasi ditambah 100 ml NH₄NO₃ dengan variasi konsentrasi 0,0 M, 0,5 M, 1,0 M, 2,0 M dan 3,0 M dan dikocok dengan orbital shaker selama 15 menit dengan kecepatan 120 rpm, didiamkan semalam dan dicuci sampai netral.
• Pertukaran ion Tahap II

Zolit terdealuminasi, zeolit yang sudah mengalami proses pertukaran ion dengan NH$_4^+$ masing-masing sebanyak 30 g ditambah larutan Ni(NO$_3$)$_2$ sebesar 2,5 % berat dididihkan selama 2 jam, didiamkan satu malam dan dikeringkan pada suhu 100 °C–120 °C selama 2 jam.

• Aktivasi Katalis

Katalis dikalsinasi pada suhu 400 °C selama 3 jam dengan dialiri gas N$_2$ dan dikalsinasi ulang pada suhu 400 °C selama 2 jam dengan dialiri gas H$_2$.

Pemberian nama kode untuk kondisi pembuatan katalis dapat dilihat pada tabel 1 di bawah ini.

Tabel 1. Kondisi pembuatan katalis

<table>
<thead>
<tr>
<th>kode</th>
<th>Konsentrasi ion NH$_4^+$ awal (M)</th>
<th>Konsentrasi ion Ni$^{2+}$ awal (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZA</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ZS</td>
<td>0,0</td>
<td>25000</td>
</tr>
<tr>
<td>ZNi-1</td>
<td>0,5</td>
<td>25000</td>
</tr>
<tr>
<td>ZNi-2</td>
<td>1,0</td>
<td>25000</td>
</tr>
<tr>
<td>ZNi-3</td>
<td>2,0</td>
<td>25000</td>
</tr>
<tr>
<td>ZNi-4</td>
<td>3,0</td>
<td>25000</td>
</tr>
</tbody>
</table>

ZA adalah zeolit alam tanpa mengalami perlakuan, ZS adalah zeolit standar merupakan katalis tanpa melalui proses pembentukan NH$_4$-zeolit, berurutan dari ZS sampai ZNi-4 merupakan katalis Ni zeolit dengan variasi konsentrasi ion amonium pada proses pertukaran ion tahap I.
3.3.2 Penentuan keasaman secara gravimetri

Penentuan keasaman dilakukan untuk mengetahui jumlah total situs asam yang dimiliki katalis. Mula mula ditimbang gelas arloji kosong, kemudian diisi dengan 1 g sampel dan dimasukkan ke dalam oven vakum. Oven divakumkan pada tekanan 15 cm Hg kemudian diisi dengan amonia dan didiamkan semalam. Oven dibuka selama 1,5 jam dan ditimbang untuk memperoleh berat NH₃ yang teradsorpsi oleh permukaan padatan.

3.3.3. Analisa AAS

Katalis dihaluskan sampai berukuran 400 mesh, ditimbang sebanyak 0,2 g dan dimasukkan ke dalam erlenmeyer, kemudian ditambah 5 mL akuaregia. Sampel diuapkan hingga akuaregia hampir kering, ditambah 10 mL akuades dan diuapkan kembali hingga mencapai volume 5 mL.

Larutan sampel diencerkan dengan akuades dalam labu takar 25 mL dan selanjutnya diperiksa kadar logam dengan AAS Perkin Elmer 3110. Analisa kadar logam Ni dilakukan di laboratorium kimia analitik UGM.

3.3.4. Analisa adsorpsi NH₃ dengan FTIR

Zeolit alam, katalis berkadar logam Ni paling rendah dan katalis berkadar logam Ni tertinggi, sebelum dan sesudah mengadsorpsi NH₃ dianalisa dengan Shimadzu Hyper FTIR–820 IPC. Dilakukan analisa adsorpsi NH₃ dengan FTIR untuk mengetahui daerah penyerapan.
3.3.5. Uji aktivitas katalis

Uji aktivitas katalis Ni zeolit dilakukan untuk reaksi hidrogenasi benzena menjadi sikloheksana dalam reaktor sistem alir. Benzena dan hasil uji katalis dianalisa dengan kromatografi gas.

Kondisi operasi reaksi katalitik sebagai berikut:

- **Volume benzena**: 40 mL
- **Suhu**: 100 °C sampai 140 °C
- **Tekanan awal gas H₂**: 100 kgf/cm²
- **Tekanan akhir gas H₂**: 95 kgf/cm²
- **Waktu**: 1 jam 15 menit
- **Kecepatan alir gas H₂**: 2,67 L/menit.
- **Berat katalis**: 2,75 gram (10 pelet)