BAB II

TINJAUAN PUSTAKA

2.1. Katalis

Menurut Oswald (1900), katalis adalah suatu zat yang dapat mengubah kecepatan reaksi kimia dan muncul kembali pada akhir reaksi. Sifat terpenting dari katalis adalah dapat mempercepat reaksi dengan menurunkan energi aktivasi secara selektif. Berdasarkan fasa - fasa dari reaktan, katalis dapat digolongkan atas katalis homogen dimana katalis berada pada fasa yang sama dengan reaktan dan katalis heterogen dimana katalis berada pada fasa yang berbeda dengan reaktan.

Dalam katalis heterogen reaksi terjadi antara molekul atau atom yang teradsorpsi oleh permukaan katalis sedemikian rupa sehingga akan menurunkan energi aktivasi dan reaksi akan berjalan cepat. Secara umum tahapan interaksi antara reaktan dengan permukaan zat padat adalah:

1. difusi reaktan kedalam pemukaan katalis
2. adsorpsi reaktan kedalam katalis
3. interaksi reaktan pada permukaan katalis
4. desorpsi produk keluar dari katalis
5. difusi produk keluar dari katalis.

Katalis bukan hanya aktif dan selektif tetapi harus menjaga atau menahan terjadinya proses sintering. Pada umumnya logam yang bertsifat katalis didistribusikan diatas permukaan komponen lain yang disebut pengemban, sehingga terbentuk sistem dispersi yang homogen dan merata. Dengan demikian
akan meningkatkan luas permukaan logam aktif dibanding tanpa pengembian. Karena logam dalam keadaan terdispersi maka keadaan partikel menjadi stabil. Pengembian juga dapat menambah daya katalitik. Bahan yang digunakan sebagai pengembian biasanya terdiri dari satu atau lebih oksida logam seperti alumina, silika, magnesia, titania, zirconia, alumino - silikat maupun zeolit.[5,6]

2.1.1. Unit Katalisa Hidrokraking

Unit katalisa hidrokraking dan efektifitas penggunaannya pertama kali ditemukan oleh Eugen J. Houdry yang merupakan proses sekunder dari pengolahan minyak bumi. Katalisa hidrokraking dikembangkan untuk menggantikan proses termal yang secara ekonomis dan kuantitatif lebih rendah.[2,7]

Secara umum katalisa hidrokraking adalah terjadinya ion karbanium dari hidrokarbon dengan katalis asam. Untuk memulai Reaksi akan dihasilkan ion karbanium sebelum terjadinya produk. Reaksi hidrokraking merupakan reaksi endoterm untuk memutuskan ikatan C – C dan secara termodinamika memerlukan temperatur tinggi.[7]

2.1.2. Karakter Katalis Hidrokraking

Kinerja suatu katalis heterogen dapat dinyatakan dalam bentuk aktivitas, selektifitas, tekstur dan umur katalis. Penyelidikan terhadap karakter katalis hidrokraking pada beberapa dekade terakhir ini terus berkembang, karena karakter ini mempengaruhi kinerja suatu katalis. Karakter ini meliputi:
1. **Geometri Struktur** yaitu rongga dan saluran yang teratur berperan dalam proses difusi pemisah molekul serta berpengaruh terhadap mekanisme adsorpsi.

2. **Kristalinitas** yang berkaitan dengan luas permukaan dan volume pori berperan dalam proses dan kontak antar reaktan. Pada katalis zat padat luas permukaan sangat berpengaruh dalam proses difusi maupun adsorpsi dari molekul yang terkatalisis. Pada bidang antar muka inilah akan terjadi kontak atau interaksi molekul reaktan dengan katalis.

3. **Situs aktif atau keasaman** yaitu tempat terjadinya transfer elektron dari dan kedalam reaktan.

4. **Stabilitas termal** yang menjaga agar katalis tidak runtuh pada temperatur operasi.\[^{[5,6]}\]

2.2. Zeolit Alam

Menurut Barrer, Zeolit berasal dari kata Zein (Ζεῖν) yang berarti mendidih dan lithos (λίθος) yang berarti batuan. Pemberian nama ini berdasarkan pada sifat mineralnya yang mudah membusui dan mengembang bila dipanaskan.\[^{[8]}\]

Zeolit pertama kali ditemukan oleh seorang ahli mineral asal Swedia yang bernama Baron Axel Cronsted pada tahun 1756. Menurut Barrer zeolit merupakan struktur kristal berongga yang terbentuk oleh jaringan alumina - silika tetrahedral tiga dimensi yang memiliki struktur yang relatif teratur dengan rongga
yang didalamnya terisi oleh ion logam alkali / alkali tanah sebagai penyeimbang muatan dan dikelilingi oleh molekul air.\[9\]

2.2.1. Struktur dan Komposisi Zeolit

Zeolit merupakan struktur kristal alumina - silika terhidrat dengan struktur tiga dimensi terbuka yang terbentuk oleh (SiO\(_4\))\(^4\) dan (AlO\(_4\))\(^3\) tetrahedral yang dihubungkan oleh atom oksigen membentuk rongga yang saling berhubungan menjadi suatu sistem saluran atau jaringan.\[10\]

Rumus umum dari komposisi zeolit adalah:

\[M_{x/z} \{ [AlO_2]_z [SiO_2]_y \} \cdot zH_2O. \]

atau

\[M_{x/n} \{ Al_{x-y}Si_yO_2 (x+y) \} \cdot pH_2O. \]

dimana:

- \(M \) : Kation dengan muatan \(n \) yang menetralkan kerangka
- \{ \} : Kerangka alumina – silika
- \(z, p \) : Jumlah molekul air yang terhidrat

Biasanya komposisi zeolit diberikan dengan tipe rumus oksida, yaitu:

\[M_{2n}O \cdot Al_2O_3 \cdot xSiO_2 \cdot yH_2O. \] \[3\]
Rumus diatas menunjukkan struktur satu unit sel dari zeolit dan bagian tanda kurung merupakan komposisi kerangkanya.\[^{10}\] Sedangkan gambar struktur umum zeolit adalah:

\[
\begin{array}{c}
\text{O} \\
\text{Si} \\
\text{O} \\
\end{array}
\]

Gambar 2.1. Struktur Zeolit

Satuan bangun zeolit merupakan kerangka tetrahedral dari atom oksigen berbentuk unit kecil \(\text{TO}_4 \) (\(T = \text{Si atau Al} \)). Unit ini merupakan unit pembangun dasar struktur zeolit.

\[
\begin{array}{c}
\text{a.} \\
\text{b.}
\end{array}
\]

Gambar 2.2. Unit Pembangun Primer

a. Tetrahedral Silika
b. tetrahedral Alumina
Unit dasar ini biasanya mempunyai atom pusat Si4+, namun dalam proses selanjutnya Si4+ ini akan digantikan oleh Al3+ melalui substitusi isomorfik, dan apabila ini terjadi maka akan terjadi muatan negatif dalam struktur tetrahedral tersebut.[11] Dalam perkembangan selanjutnya diketahui bahwa muatan negatif dari kerangka alumina - silika ini akan dinetralkan oleh kation pengganti yang menempati rongga dalam kerangka tersebut.[3]

2.2.2. Topologi Zeolit

Topologi zeolit dalam hal ini digambarkan sebagai unit pembangunan sekunder (Secondary Building Unit atau SBU). Dalam SBU - SBU tersebut Si dan Al secara tiga dimensi digambarkan berada pada disudut sedangkan atom oksigen berada diantaranya. Kristalinitas zeolit ditentukan oleh perbedaan bentuk dan ukurannya. Dalam hal ini dalam jumlah yang besar dengan meng-kombinasikan beberapa bentuk kristal yang membentuk rongga dan saluran. Salah satu diantaranya adalah bentuk oktahedron terpotong yang biasa disebut sangat sodalit.

Tiap sangat sodalit mengandung 24 ikatan tetrahedral. Ikatan sangat selanjutnya akan membentuk zeolit yang berbeda-beda.[9] Sangkar sodalit yang terikat melalui cicin ganda lingkar 4 akan membentuk zeolit A. Sedangkan zeolit X dan Y terbentuk melalui ikatan ganda lingkar 6. Hasil pembentukan sangkar yang lebih besar yaitu mengandung 26 unit tetrahedral seperti kebanyakan faujasit disebut sebagai super cage yang berdiameter 12,7 angstrom. Tiap struktur zeolit
mengandung saluran unik yang tersusun membentuk variasi jaringan satu, dua dan tiga dimensi.[8,9,13]

Padatan zeolit memiliki struktur kristal yang baik. Struktur zeolit mempunyai pori dan mengandung gugus aktif yang terletak pada saluran antar kristalnya. Permukaan zeolit mempunyai gugus asam yang dapat memberikan sifat keasaman katalis, yaitu asam Bronsted (H⁺) dan asam Lewis (Si.). Sifat keasaman permukaan yang ditimbulkan oleh H⁺ inlah yang dapat dimanfaatkan untuk membentuk zeolit sebagai pengembangan bagai katalis logam.[3]

2.2.3. Zeolit Sebagai Katalis Hidrokraking

Terdapat suatu asumsi bahwa transformasi kimia dalam proses katalisis zeolit terjadi dalam volume pori dengan luas permukaan yang besar. Kemudian untuk terjadinya suatu reaksi pada sebuah partikel zeolit terdapat dua sistem yaitu jalan masuk pori dan rongga saluran harus cukup untuk terjadinya transport materi dari fase permukaan luar kedalam situs aktif dan sebaliknya.[1]

Zeolit merupakan katalis yang baik karena mempunyai pori atau saluran yang besar dan memiliki luas permukaan maksimum. Sifat karakteristik zeolit sebagai katalis adalah adanya ruang kosong yang membentuk saluran dalam struktturnya. Apabila zeolit digunakan sebagai katalis maka akan terjadi difusi molekul kedalam ruang bebas dalam kristal. Dengan demikian dimensi serta lokasi maupun bentuk saluran sangat penting karena reaksi kimia akan terjadi dipermukaan saluran tersebut.[5,6]
Dalam penggunaan zeolit sebagai katalis rasio Si/Al sama sekali tidak acak, komposisi ini akan mengatur atau mengontrol muatan kerangka dan berpengaruh terhadap stabilitas struktur. Muatan kerangka akan berpengaruh pada medan elektrostatik dalam rongga atau pori dan dapat mengubah interaksi zeolit dengan molekul yang teradsorpsi.\[3\]

2.3. Modifikasi dan Sintesis Ni-Zeolit

Kinerja zeolit sebagai katalis meliputi aktivitas katalitik, selektifitas dan umur katalis merupakan sifat karakteristik yang selalu diperbaiki dalam setiap penelitian. Sifat katalitik ini bergantung kepada struktur kimia dan fisik, yang kenyataannya ditentukan oleh kondisi sintesis. Adapun struktur kimia meliputi komposisi kimia dan sifat – sifat senyawa sedangkan struktur fisika meliputi struktur kristal dan tekstur.\[8\]

Beberapa perlakuan sangat diperlukan untuk mendapatkan zeolit dalam bentuk dan komposisi jaringan yang berbeda sesuai dengan keinginan. Menurut Hamdan modifikasi zeolit dimaksudkan untuk mengubah struktur kerangka, kation pengganti, ukuran pori atau rongga maupun rasio silika - alumina. Beberapa teknik modifikasi yang paling umum adalah proses dehirasi, pertukaran ion, kalsinasi dan dealuminasi.\[21\] Banyak metode preparasi maupun sintesis katalis zeolit yang telah dipublikasikan. Perbedaan cara preparasi akan memberikan hasil yang berbeda, masing – masing kondisi preparasi menyebabkan sifat katalis yang diperoleh juga bervariasi.\[5,6,7\]
2.3.1. Pendistribusian garam prekursor pada pengembangan

Terbentuknya hasil akhir katalis sebagai spesies logam aktif (atom nickel) yang teremban dalam zeolit sangat tergantung kepada kondisi preparasi, karena masuknya nickel kedalam permukaan atau pori zeolit ditentukan oleh seberapa besar interaksi yang terjadi antara larutan garam prekursor dengan pengembangan. Pendistribusian garam prekursor kedalam pengembangan dapat dilakukan dengan cara impregnasi. Impregnasi secara umum didefinisikan sebagai cara preparasi katalis dengan cara adsorpsi larutan garam prekursor kedalam pengembangan. Metode seperti ini merupakan cara yang cukup efisien dan tinerulang.\[5,7,13\]

1. Proses kering (Incipient wetness impregnation)

Material pengembangan dibasahi dengan sejumlah larutan garam prekursor disesuaikan dengan volume pori pengembangan (zeolit). Kemudian dilakukan pengeringan beberapa lama. Proses kering lebih menguntungkan karena proses sederhana, ekonomis dan kandungan garam prekursor dapat langsung diketahui. Kerugian adalah kandungan garam prekursor terbatas, namun ini dapat dihindari dengan cara impregnasi berulang.\[5,7,13\]

2. Proses Basah (Dipping Impregnation)

Material pengembangan direndam dalam larutan garam prekursor hingga terjadi difusi antara larutan garam prekursor dalam pori pengembangan, suspensi diaduk beberapa waktu, kemudian disaring dan dikerdiman. Teknik ini digunakan terutama apabila terjadi interaksi kuat antara garam prekursor dengan pengembangan.\[13\]
3. Pertukaran Ion (Ion Exchange)

Metode ion exchange sering digunakan dalam preparasi katalis logam dalam zeolit. Kation logam akan terisolasi pada jarak dan sifat yang berbeda satu sama lain. Proses pertukaran ion pada zeolit adalah pertukaran kation yang terdapat dalam rongga kristal dengan kation lain dari larutan. Pertukaran ini tidak selalu berhasil, kecuali digunakan larutan dengan konsentrasi tinggi atau menaikkan temperatur sistem.\(^2\) Pada temperatur 180\(^\circ\)C sistem memiliki:

\[
2 (Na^+ - \text{Zeolit}) + Ni^{2+} \rightarrow Ni^{2+} \cdot (\text{Zeolit})_2 + 2 Na^+ \quad \ldots(1)
\]

\[
\Delta G = +10.8 \text{ KJ mol}^{-1} \quad Ka = 0.057. \quad [3]
\]

2.3.2. Perlakuan TermaI

Dalam susunan kristal zeolit terdapat dua jenis molekul air, yaitu molekul air yang terikat kuat dan molekul air bebas. Volume ruang hampa dalam struktur zeolit cukup besar dan inilah yang menjadi dasar penggunaan zeolit sebagai pemisah molekul dan katalis.\(^9\) Kapasitas atau daya saring tergantung pada banyaknya sisi kosong tersebut. Perlu diingat bahwa semua proses adsorpsi dan katalisis terjadi dalam struktur zeolit yang memiliki sifat hidrofilik dan memperlihatkan afinitas yang kuat terhadap molekul air. Dengan demikian semua aplikasi pada zeolit memerlukan proses dehidrasi, kalsinasi dan reduksi untuk mencapai kondisi bebas air.\(^{11}\)
1. Dehidrasi

Pengeringan memerlukan temperatur antara 80 - 120 °C. Perlakuan ini juga diperlukan untuk menghilangkan pelarut garam prekursor yang teradsorpsi dalam pengembangan, karena adanya air dalam katalis akan meracuni situs aktif.\(^{12}\)

Distribusi logam dalam pori atau rongga zeolit akan maksimum apabila molekul air telah keluar dari zeolit. Molekul air dalam pori akan menyebabkan distribusi dan penyebaran logam tidak merata dan membuat stabilitas struktur maupun logam rendah. Hal ini disebabkan adanya interaksi kuat antara molekul air dengan logam. Dengan demikian akan membuat luas permukaan logam menjadi kecil.\(^{5,6}\)

2. Kalsinasi

Kalsinasi adalah pemanasan sampel pada temperatur tinggi yang berpengaruh terhadap kritalinitas katalis yang berkaitan dengan luas permukaan, menguapkan air dan garam yang terlarut dalam kisi kristal. Menurut Hamdan kalsinasi adalah suatu perlakuan termal dengan temperatur pemanasan yang relatif tinggi dibandingkan dengan pemanasan biasa yang hanya berkisar antara 100°C - 110°C. Secara garis besar, reaksi kalsinasi zat padat dapat digambarkan sebagai berikut:

\[
A_\text{(s)} \rightarrow B_\text{(t)} + C_\text{(s)} \tag{2}
\]

Diperkirakan akan terjadi dekomposisi tiap kristal \(A_\text{(s)}\) sehingga akan menaikkan jumlah kristal \(B_\text{(t)}\). Kristal \(B\) bersifat metastabil dan merupakan pseudo
kristal A. Bentuk reaksi seperti digambarkan diatas akan cenderung mengalami rekristalisasi dengan proses sintering bila dipanaskan pada temperatur yang relatif tinggi dengan waktu relatif lama. Overlap dari proses ini akan mempengaruhi proses dekomposisi dan rekristalisasi yang menghasilkan luas permukaan dan temperatur yang maksimal.\[10\]

Perubahan yang terjadi selama kalsinasi adalah:
1. dekomposisi garam prekursor dan pembentukan spesies oksida
2. reaksi spesies oksida dengan pengembang
3. sintering atau terbentuk spesies oksida yang lain.\[12\]

3. Reduksi

Tranformasi garam prekursor kedalam bentuk logam aktif biasanya dilakukan dengan mereduksinya dengan gas hidrogen pada temperatur 450 - 500 °C selama 4 - 5 jam. Pada proses reduksi terjadi kontak atau interaksi antara oksida logam dengan gas hidrogen. Ion oksigen yang terbentuk kemudian keluar dari kisi sehingga akan menimbulkan kekosongan (vacancy). Inti logam akan tumbuh dan terbentuk lewat adanya kekosongan tersebut. Pertumbuhan ini berlanjut hingga semua oksida logam tereduksi.\[5\] Proses reduksi pada temperatur 450 °C terhadap zeolit yang mengandung spesies logam nickel akan menghasilkan produk berupa nickel logam aktif.\[10\]
2.4. Difraksi Sinar-X

Metode yang penting untuk karakterisasi zeolit secara kualitatif dan kuantitatif adalah difraksi sinar-x.14 Teknik ini digunakan untuk identifikasi struktur zeolit secara kualitatif karena pola difraksi sinar-x hampir mirip dengan pola sidik jari. Disini terdapat informasi mengenai kemurnian fasa, kristalinitas, perubahan parameter kisi atau struktur yang memungkinkan untuk menilai beberapa efek.2

Pola difraksi adalah hubungan atau plot intensitas yang memiliki hubungan parameter kisi atau indeks miller (hkl) sebagai fungsi θ, dimana θ adalah sudut difraksi pada kondisi Bragg.14,15

Gambar 2.3. Pola difraksi sinar-X
\[n\lambda = 2d \sin \beta \] ... (3)

Dimana \(d \) adalah jarak antar bidang dan \(\lambda \) adalah panjang gelombang.

Teknik difraksi biasa digunakan untuk menganalisa struktur kisi. Perubahan jarak antar bidang (\(d \)) akan mempengaruhi posisi puncak dalam difraktogram. Sebagai contoh penggantian ikatan Al-O (1,69 \(\text{Å} \)) dengan ikatan yang lebih pendek Si-O (1,61 \(\text{Å} \)) menyebabkan pengkerutan atau penyempitan unit sel. Hal ini akan menyebabkan jarak antar bidang (\(d_{\text{mm}} \)) lebih pendek dan puncak difraksi akan bergeser kearah sudut 2\(\theta \) yang lebih besar. Dalam analisa mineral zeolit puncak difraksi pada sudut rendah (2\(\theta \) = 5\(^\circ\)-10\(^\circ\)) menunjukkan adanya molekul air dalam kisi kristal (intercystallin water). Puncak ini akan menurun dengan adanya proses dehidrasi. Puncak dengan intensitas kuat, sempit dan datar terhadap garis dasar menunjukkan kristalinitas dan kemurnian zeolit.

Perlakuan termal maupun perlakuan secara kimia terhadap mineral zeolit akan menyebabkan degradasi mineral. Degradasi ini terdapat kemungkinan terjadi bentuk kristal yang baik (kristalin) maupun produk amorf. Pola difraksi zeolit seringkali menunjukkan pola penyatuan hamburan (diffuse Scattering). Posisi atom Si dan Al terdistribusi secara acak seringkali menyulitkan penentuan struktur. Meskipun demikian kemungkinan untuk mendapatkan derajat kristalinitas (\%) secara kualitatif relatif terhadap pola difraksi sampel standart atau membandingkan sampel awal dapat dilakukan. \([2,14,15]\)
2.5. Keasaman Permukaan Padatan

Sesuai dengan teori asam basa Lewis maka kekuatan asam padatan adalah kemampuan dari permukaan padatan untuk mengubah basa Lewis yang teradsorpsi menjadi bentuk asam konjugatnya.[11,16]

Katalis zeolit memiliki perbedaan dengan katalis lain dalam situs aktif katalistik yang terdistribusi secara seragam pada padatannya. Situs dari zeolit terletak pada situs asamnya. Terdapat dua jenis situs asam dalam kerangka zeolit yaitu asam Bronsted dan Lewis. Situs asam Bronsted berupa proton yang terikat pada kerangka oksigen yang berkaitan langsung dengan atom silikon dan alumunium sedangkan situs asam Lewis pada zeolit adalah atom silikon yang kekurangan elektron karena proses dehidrasi pada temperatur tinggi.[11]

Banyaknya mmol per gram atau per satuan luas permukaan merupakan jumlah asam atau keasaman. Besaran ini diperoleh dari pengukuran basa yang bereaksi atau teradsorsi pada permukaan padatan yang bersifat asam. Dasar pemikirannya adalah jumlah basa yang diadsorpsi oleh padatan adalah ekivalen dengan jumlah asam padatan yang mengadsorpsi basa tersebut. Basa yang lazim digunakan adalah piridin dan amonia.[3,11]

2.5.1. Metoda Penentuan Keasaman Secara Kuantitatif

Jumlah asam dapat ditentukan dengan metode adsorpsi basa pada fasa gas oleh permukaan padatan zeolit yang bersifat asam. Dengan penimbangan dapat diketahui selisih antara berat sampel sebelum dengan sesudah mengadsorpsi basa sehingga dapat diketahui jumlah asam atau keasamannya.[3,11,16]
2.5.2. Metoda Penentuan keasaman Secara Kualitatif

Metode spektroskopi infra merah telah digunakan secara luas untuk mempelajari terjadinya interaksi antara gas dengan suatu padatan. Metoda ini dapat digunakan untuk menentukan interaksi yang terjadi antara adsorbat dengan katalis logam pengemban. Metoda ini memberikan informasi mengenai terjadinya kontak antara molekul gas pada permukaan padatan sehingga dapat menentukan sifat adsorpsinya."[3,11,16]