BAB III

METODOLOGI PENELITIAN

3.1. Alat dan Bahan

3.1.1 Peralatan yang digunakan:

- a. seperangkat alat gelas
- b. seperangkat alat ekstraksi
- c. seperangkat alat evaporator buchi
- d. desikator
- e. termometer (-50 s/d 50° C)
- f. plat kromatografi
- g. lampu UV
- h. alat penentu titik leleh (Fisher John)
- i. mikroskop
- j. kertas Whatman no. 42
- k. sentrifus

3.1.2 Bahan yang Digunakan

- a. kedelai putih kering
- b. etanol (pa)
- c. metanol (pa)
- d. isobutanol (pa)
- e. asam asetat glasial

- f. asam asetat 96 %
- g. akuades
- h. n-butanol (pa)
- i. dietileter (pa)

3.2. Pembuatan Reagen

3.2.1 Pembuatan larutan etanol 60 %

Dimasukkan sebanyak 312,5 mL etanol 96 % dalam labu takar 500 mL dan dicampurkan akuades sampai tanda batas.

3.2.2 Pembuatan larutan isobutanol: asam asetat glasial: air 3:1:1

Dimasukkan isobutanol: asam asetat glasial: air masing-masing 30 mL: 10 mL:10 mL

3.2.3 Pembuatan larutan n-butanol : asam asetat : air 6:1:3

Dimasukkan n-butanol: asam asetat: air masing-masing 60 mL: 10 mL: 30 mL

3.2.4 Pembuatan larutan NaOH 5 %

Dilarutkan 5 gram NaOH ke dalam akuades sehingga menjadi 100 mL larutan

3.2.5 Pembuatan laruta FeCl₃

Dilarutkan 1 gram FeCl₃ ke dalam akuades sehingga menjadi 100 mL larutan

3.3. Cara Kerja

3.3.1 Persiapan sampel

Kedelai putih diambil dari pasar Peterongan dan dipisahkan dari kotoran untuk kemudian diblender sampai berbentuk tepung.

3.3.2 Isolasi isoflavon dari kedelai

- a. Sebanyak 150 gram tepung kedelai diekstraksi dengan 750 mL etanol 60 %
 selama 2 jam.
- b. Campuran didinginkan
- c. Disaring dengan kertas Whatman no. 42, terbentuk filtrat dan residu
- d. Filtrat dipekatkan menjadi 120 mL dengan rotari evaporator buchi suhu 40 ° C dengan pompa vakum dan disebut fraksi I.
- e. Fraksi I diekstraksi dengan 120 mL dietil eter selama 2 jam dan dipisahkan menggunakan corong pisah dan terbentuk 2 lapisan.
- f Lapisan atas sebagai fraksi II dan lapisan sebagai fraksi II adalah yang larut dalam etanol
- g. Fraksi III diuapkan pelarutnya dengan desikator
- h. Cairan kental yang dihasilkan sebanyak 12,5 mL diekstraksi dengan 125 mL metanol.
- i. Campuran didinginkan, fraksi yang tidak larut disebut fraksi III B dan fraksi yang larut adalah III A.
- j. Fraksi III A diuapkan pelarutnya dengan rotary evaporator sampai volume 25 mL dan didinginkan.
- k. Campuran disaring dengan kertas Whatman No. 42 terbentuk kristal putih sebagai fraksi III Ab dan filtrat sebagai fraksi III Aa
- 1. Dari fraksi III Aa dipekatkan menjadi 5 gram ekstrak kental 🤊
- m. Ekstrak kental ditotolkan dalam bentuk garis pada plat kromatografi lapis tipis dan dielusi dengan larutan pengembang isobutanol : asam asetat glasial : air 3 :

1:1

n. Letak dan jumlah noda/bercak dilihat dengan sinar UV 254 nm

- o. Warna noda dilihat dengan sinar UV 365 nm
- p. Noda yang menunjukkan ciri senyawa isoflavon dikerok dan diekstraksi dengan etanol
- q. Metanol diuapkan dan terbentuk cairan kental sebanyak 2 gram

3.3.3. Pemisahan Genestein dari Isoflavon

- a. Sebanyak 2 gram ekstrak kental ditotolkan pada plat dielusi dengan larutan pengembang n butanol : asam asetat : air 6:1:3
- b. Letak dan jumlah noda dilihat dengan sinar UV 254 nm dan diukur nilai Rf.
- c. Noda yang mempunyai harga Rf sesuai Rf standar genestein yaitu 0,84, dikerok dan diekstraksi dengan metanol.
- d. Metanol diuapkan dan terbentuk endapan kuning
- e. Endapan kuning direkristalisasi dengan etanol

3.3.4. Penentuan sifat fisik genestein

- a. Bentuk dan warna kristal dilihat dengan mikroskop dengan perbesaran 64x
- b. Kristal diuji kelarutan dalam larutan NaOH dan air
- c. Kristal diuji dengan larutan FeCl₃ 1%
- d. Kristal diuji titik lelehnya dengan alat Fisher John