A.2 Destruksi zeolit alam

Zeolit aktif

Penambahan NaOH dengan perbandingan 1 : 2
Penggerusan dan homogenisasi
Furnace pada temperatur 500°C selama 1 jam
Pendinginan pada temperatur kamar
Penggerusan

Zeolit terdestruksi

Karakterisasi dengan XRD

Penambahan 25 mL akuades
Sentrifus 3800 rpm, 15 menit

Filtrat

Karakterisasi dengan AAS

Endapan
A.3 Modifikasi zeolit alam

17 mL Filtrat

- Penambahan 10 mL larutan Na-silikat (1 : 1)
- Penambahan 10 mL larutan n-CTMABr 0,3 M
- Penambahan 5 mL larutan TMACl 0,2 M
- Homogenisasi

Campuran

- Penambahan larutan H₂SO₄ (1 : 1) sampai pH 11
- Pengadukan

Campuran fase gel (pH 11)

- Hidrotermal pada suhu 120 °C selama 1, 2 dan 3 hari

Zeolit Hidrotermal

- Karakterisasi dengan XRD

Kalsinasi pada suhu 400°C selama 3 jam

Zeolit hasil modifikasi

- Karakterisasi

Spektra IR, XRD, Adsorpsi Gas N₂
Lampiran B. Perhitungan Preparasi Bahan

B.1 Pembuatan larutan HF 1 %

Diket: \(\rho \) HF = 1,14 kg/l
\(\quad M_r \) HF = 20 g/mol

a. Konsentrasi HF 50%

\[
M_{HF} = \frac{50\% \times \rho}{M_r}
\]
\[
M_{HF} = \frac{50 \times 1,14 \times 10^3 \text{ g/l}}{100 \times 20 \text{ g/mol}}
\]
\[
M_{HF} = \frac{57 \times 10^3 \text{ mol}}{2000 \text{ l}}
\]
\[
M_{HF} = 28,5 \text{ M}
\]

b. Konsentrasi HF 1%

\[
M_{HF} = \frac{1\% \times \rho}{M_r}
\]
\[
M_{HF} = \frac{1 \times 1,14 \times 10^3 \text{ g/l}}{100 \times 20 \text{ g/mol}}
\]
\[
M_{HF} = \frac{1,14 \times 10^3 \text{ mol}}{2000 \text{ l}}
\]
\[
M_{HF} = 0,57 \text{ M}
\]

c. Volume HF 50% yang Dibutuhkan Untuk Membuat HF 1%

\[
V_o \times M_o = V \times M
\]

\(M_o \) : konsentrasi HF 50%

\(M \) : konsentrasi HF 1%

\(V_o \) : volume larutan HF 50% yang digunakan
\[V_0 \times M_0 = V \times M \]
\[V_0 = \frac{V \times M}{M_0} \]
\[V_0 = \frac{2000 \text{ mL} \times 0.57 \text{ M}}{28.5 \text{ M}} \]
\[V_0 = \frac{1140 \text{ mL}}{28.5} \]
\[V_0 = 40 \text{ mL} \]

Jadi volume HF 50% yang dibutuhkan untuk membuat HF 1% adalah 40 mL.

B.2 Pembuatan larutan n-CTMABr 0,3 M

\[n = M \times V \]

Dimana \(M \): molaritas larutan

\(V \): volume larutan yang akan dibuat

\(n \): jumlah mol

\[n = 0.3 M \times 100 mL = 30 mmol = 0.03 \text{ mol} \]

Massa n-CTMABr yang dibutuhkan untuk membuat 0,03 mol n-CTMABr dihitung dengan rumus \(g = n \times \text{massa molekul relatif n-CTMABr} \)

\[g = n \times M, \text{ n-CTMABr} \]
\[= 0.03 \text{ mol} \times 364.4 \text{ g/mol} \]
\[= 10.932 \text{ g} \]

B.3 Pembuatan larutan TMACl 0,2 M

\[n = M \times V \]

Dimana: \(M \): molaritas larutan
V : volume larutan yang akan dibuat

n : jumlah mol

\[n = M \times V \]

\[= 0,2 \times 50 \text{mL} \]

\[= 10 \text{mmol} = 0,01 \text{mol} \]

Gram TMACl yang dibutuhkan untuk membuat 0,01 mol TMACl adalah

\[\text{gram} = \text{mol} \times M, \text{TMACl} \]

\[= 0,01 \times 109,6 \text{g/mol} \]

\[= 1,096 \text{g} \]

B.4 Perhitungan kadar Si dalam waterglass atau natrium-silikat

Diketahui : SiO₂ (Si = 28, O = 16)

\[\% \text{ w/w SiO₂} = 27 \% \]

\[\rho = 1,35 \text{ kg/L} \]

Jumlah SiO₂ dalam 1 L natrium-silikat

\[\text{massa SiO₂} = \% \text{ w/w} \times \text{massa total} \]

\[= \frac{27}{100} \times 1,35 \text{kg} = 0,3645 \text{kg} \]

Jadi dalam 1 L larutan natrium-silikat terdapat 0,3645 kg SiO₂ atau dalam 1 mL larutan natrium-silikat terdapat 0,3645 g SiO₂.

\[\% \text{Si dalam SiO₂} = \frac{A_r \text{ Si}}{M_r \text{ SiO₂}} \times 100\% \]

\[= \frac{28}{60} \times 100\% = 46,67\% \]

Jumlah Si dalam 1 mL larutan natrium-silikat

\[= 46,67\% \times 0,3465 \text{g} = 0,17011215 \text{g} \]
Jumlah mol Si

\[n = \frac{g}{M, Si} = \frac{0.17011215 g}{28 \text{g/mol}} = 6.075 \times 10^{-3} \text{ mol} \]

Jadi dalam 1 mL larutan natrium-silikat terdapat \(6.075 \times 10^{-3} \) mol Si
Lampiran C. Penentuan Kadar Si dan Al dalam Filtrat Zeolit Alam

C.1 Kadar Si filtrat hasil destruksi zeolit alam

Data Absorbansi Standar Si

<table>
<thead>
<tr>
<th>ppm</th>
<th>Absorbansi</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>0,057</td>
</tr>
<tr>
<td>80</td>
<td>0,092</td>
</tr>
<tr>
<td>100</td>
<td>0,108</td>
</tr>
</tbody>
</table>

Diperoleh persamaan \(y = 0,00085357 \times x + 0,02307 \)

Data absorbansi sampel

<table>
<thead>
<tr>
<th>Sampel</th>
<th>Absorbansi</th>
<th>Faktor pengenceran</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filtrat zeolit destruksi</td>
<td>0,061</td>
<td>1250 x</td>
</tr>
</tbody>
</table>

\(0,061 = 0,00085357 \times x + 0,02037 \)

\(x = 44,44 \) ppm

Rumus yang digunakan untuk menghitung kadar Si:

\[
ppm = \frac{\text{ppm perhitungan} \times \text{volume induk} \times \text{pengenceran}}{\text{gram penimbangan}}
\]

\[
ppm = \frac{44,44 \times 1 \times 1250}{1} = 55550 \text{ ppm}
\]

Dalam 1 mL filtrat terdapat Si sebesar 55550 ppm, dihitung dalam bentuk mol sebagai berikut:

\[
\text{mol} = \frac{\text{gram Si}}{A, \text{Si}}
\]

\[
\text{mol} = \frac{55550 \text{ mg/L}}{28 \text{ g/mol}} = 1,984 \times 10^{-3} \text{ g/mL}
\]

\[
\text{mol} = \frac{55,55 \times 10^{-3} \text{ g/mL}}{28 \text{ g/mol}} = 1,984 \times 10^{-3} \text{ mol}
\]

Jadi dalam 1 mL filtrat terdapat Si sebanyak 1,984 \times 10^{-3} \text{ mol.}
C.2 Kadar Al filtrat hasil destruksi zeolit alam

Data Absorbansi Standar Al

<table>
<thead>
<tr>
<th>ppm</th>
<th>Absorbansi</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0,091</td>
</tr>
<tr>
<td>60</td>
<td>0,221</td>
</tr>
<tr>
<td>80</td>
<td>0,282</td>
</tr>
<tr>
<td>100</td>
<td>0,326</td>
</tr>
</tbody>
</table>

Diperoleh persamaan \(y = 0,0029828 \times + 0,03611 \)

Data absorbansi sampel

<table>
<thead>
<tr>
<th>Sampel</th>
<th>Absorbansi</th>
<th>Faktor pengenceran</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filtrat zeolit destruksi</td>
<td>0,128</td>
<td>125 x</td>
</tr>
</tbody>
</table>

\(0,128 = 0,0028828 \times + 0,03611 \)
\(x = 30,81 \text{ ppm} \)

Rumus yang digunakan untuk menghitung kadar Al

\[
ppm = \frac{\text{ppm perhitungan} \times \text{volume induk} \times \text{pengenceran}}{\text{gram penimbangan}}
\]

\[
ppm = \frac{30,81 \times 1 \times 125}{1} = 381,25 \text{ ppm}
\]

Dalam 1 mL filtrat terdapat Al sebesar 381,25 ppm, dihitung dalam bentuk mol sebagai berikut:

\[
\text{mol} = \frac{\text{gram Al}}{A_{\text{Al}}}
\]

\[
\text{mol} = \frac{3851,25 \text{ mg/L}}{27 \text{ g/mol}}
\]

\[
\text{mol} = \frac{3,85125 \times 10^{-3} \text{ g/mL}}{27 \text{ g/mol}}
\]

\[
\text{mol} = 1,426 \times 10^{-4} \text{ mol}
\]

Jadi dalam 1 mL filtrat terdapat Al sebanyak 1,426x10^{-4} mol.
C.3 Perhitungan rasio Si/Al dalam filtrat hasil destruksi zeolit alam

\[
\text{Rasio Si/Al} = \frac{\text{mol Si}}{\text{mol Al}} = \frac{1.984 \times 10^{-3}}{1.426 \times 10^{-4}} = 13.913
\]

perhitungan kadar Si dalam larutan Na-silikat + H₂O (1 : 1)

\[
\text{Konsentrasi Si} = \frac{6.075 \times 10^{-3} \text{ mol}}{2 \text{ mL}} = 3.038 \times 10^{-3} \text{ M}
\]
Lampiran D. Spektra Inframerah Zeolit Hasil Modifikasi

D.1 Spektra inframerah zeolit hidrotermal

<table>
<thead>
<tr>
<th>No.</th>
<th>Pos. (1600)</th>
<th>Inten. (917)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>360.7</td>
<td>30.286</td>
</tr>
<tr>
<td>2</td>
<td>285.3</td>
<td>136.000</td>
</tr>
<tr>
<td>3</td>
<td>285.3</td>
<td>8.489</td>
</tr>
<tr>
<td>4</td>
<td>285.3</td>
<td>18.202</td>
</tr>
<tr>
<td>5</td>
<td>305.7</td>
<td>31.742</td>
</tr>
<tr>
<td>6</td>
<td>305.7</td>
<td>32.302</td>
</tr>
<tr>
<td>7</td>
<td>1065.0</td>
<td>0.642</td>
</tr>
<tr>
<td>8</td>
<td>1065.0</td>
<td>18.142</td>
</tr>
<tr>
<td>9</td>
<td>1065.0</td>
<td>32.115</td>
</tr>
<tr>
<td>10</td>
<td>2854.5</td>
<td>30.630</td>
</tr>
<tr>
<td>11</td>
<td>2854.5</td>
<td>21.050</td>
</tr>
<tr>
<td>12</td>
<td>2854.5</td>
<td>14.487</td>
</tr>
<tr>
<td>13</td>
<td>2854.5</td>
<td>17.775</td>
</tr>
</tbody>
</table>
D.2 Spektra inframerah zeolit hasil modifikasi 1 hari hidrotermal

<table>
<thead>
<tr>
<th>No</th>
<th>Pos. (cm⁻¹)</th>
<th>Inten. (%T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>325</td>
<td>15.967</td>
</tr>
<tr>
<td>2</td>
<td>336.4</td>
<td>13.247</td>
</tr>
<tr>
<td>3</td>
<td>336.4</td>
<td>15.234</td>
</tr>
<tr>
<td>4</td>
<td>412.5</td>
<td>6.297</td>
</tr>
<tr>
<td>5</td>
<td>417.3</td>
<td>19.007</td>
</tr>
<tr>
<td>6</td>
<td>417.3</td>
<td>19.007</td>
</tr>
<tr>
<td>7</td>
<td>769.0</td>
<td>26.310</td>
</tr>
<tr>
<td>8</td>
<td>1054.6</td>
<td>1.824</td>
</tr>
<tr>
<td>9</td>
<td>1498.4</td>
<td>30.922</td>
</tr>
<tr>
<td>10</td>
<td>1638.4</td>
<td>24.973</td>
</tr>
<tr>
<td>11</td>
<td>2621.6</td>
<td>28.414</td>
</tr>
<tr>
<td>12</td>
<td>3448.5</td>
<td>21.864</td>
</tr>
</tbody>
</table>
D.3 Spektra inframerah zeolit hasil modifikasi 2 hari hidrotermal
D.4 Spektra inframerah zeolit hasil modifikasi 3 hari hidrotermal

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Pos. (cm⁻¹)</th>
<th>Inten. (%T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>351.0</td>
<td>10.320</td>
</tr>
<tr>
<td>2</td>
<td>433.0</td>
<td>14.456</td>
</tr>
<tr>
<td>3</td>
<td>617.2</td>
<td>23.306</td>
</tr>
<tr>
<td>4</td>
<td>703.9</td>
<td>34.187</td>
</tr>
<tr>
<td>5</td>
<td>780.0</td>
<td>35.543</td>
</tr>
<tr>
<td>6</td>
<td>1459.1</td>
<td>27.571</td>
</tr>
<tr>
<td>7</td>
<td>1631.0</td>
<td>30.621</td>
</tr>
<tr>
<td>8</td>
<td>2346.3</td>
<td>36.362</td>
</tr>
<tr>
<td>9</td>
<td>3460.0</td>
<td>42.625</td>
</tr>
</tbody>
</table>