Tabel 1.a. Data λ Optimum Absorbansi MBAS

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>460</td>
<td>0,241</td>
</tr>
<tr>
<td>500</td>
<td>0,288</td>
</tr>
<tr>
<td>600</td>
<td>0,536</td>
</tr>
<tr>
<td>652</td>
<td>0,948</td>
</tr>
<tr>
<td>660</td>
<td>0,873</td>
</tr>
<tr>
<td>670</td>
<td>0,569</td>
</tr>
<tr>
<td>680</td>
<td>0,354</td>
</tr>
<tr>
<td>700</td>
<td>0,253</td>
</tr>
</tbody>
</table>

Tabel 1.b. Data Kurva Standar MBAS pada 652 nm

<table>
<thead>
<tr>
<th>Konsentrasi Surfaktan (mg/l)</th>
<th>Absorbansi</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0,450</td>
</tr>
<tr>
<td>100</td>
<td>0,520</td>
</tr>
<tr>
<td>150</td>
<td>0,534</td>
</tr>
<tr>
<td>200</td>
<td>0,555</td>
</tr>
<tr>
<td>225</td>
<td>0,570</td>
</tr>
</tbody>
</table>
Tabel 1.c. Konsentrasi Hasil Sublasi (Dengan Etil Asetat)

<table>
<thead>
<tr>
<th>No.</th>
<th>Konsentrasi Sampel ABS (mg/L)</th>
<th>Absorbansi</th>
<th>Konsentrasi (mg/L)</th>
<th>Persentase Hasil Sublasi (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sisa Sampel</td>
<td>Hasil Sublasi</td>
<td>Sisa Sampel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A1</td>
<td>A2</td>
<td>A3</td>
</tr>
<tr>
<td>1</td>
<td>1000</td>
<td>0.448</td>
<td>0.447</td>
<td>0.447</td>
</tr>
<tr>
<td>2</td>
<td>2000</td>
<td>0.521</td>
<td>0.522</td>
<td>0.521</td>
</tr>
<tr>
<td>3</td>
<td>3000</td>
<td>0.531</td>
<td>0.531</td>
<td>0.531</td>
</tr>
</tbody>
</table>

Tabel 1.d. Konsentrasi Hasil Sublasi (Tanpa Etil Asetat)

<table>
<thead>
<tr>
<th>No.</th>
<th>Konsentrasi Sampel ABS (mg/L)</th>
<th>Absorbansi</th>
<th>Konsentrasi (mg/L)</th>
<th>Persentase Hasil Sublasi (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sisa Sampel</td>
<td>Hasil Sublasi</td>
<td>Sisa Sampel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A1</td>
<td>A2</td>
<td>A3</td>
</tr>
<tr>
<td>1</td>
<td>1000</td>
<td>0.455</td>
<td>0.456</td>
<td>0.455</td>
</tr>
<tr>
<td>2</td>
<td>2000</td>
<td>0.545</td>
<td>0.544</td>
<td>0.545</td>
</tr>
<tr>
<td>3</td>
<td>3000</td>
<td>0.567</td>
<td>0.568</td>
<td>0.568</td>
</tr>
<tr>
<td>No.</td>
<td>Konsentrasi Sampel ABS (mg/L)</td>
<td>Tegangan Permukaan (dyne/cm)</td>
<td>Sisa Sampel</td>
<td>Hasil Sublasi</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>γ₁</td>
<td>γ₂</td>
<td>γ₃</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Konsentrasi Sampel ABS (mg/L)</th>
<th>Tegangan Permukaan (dyne/cm)</th>
<th>Sisa Sampel</th>
<th>Hasil Sublasi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>γ₁</td>
<td>γ₂</td>
<td>γ₃</td>
</tr>
</tbody>
</table>
Tabel 1.3. Perbandingan Sifat Sefaktan Alkil Benzena Sulfonat dan Linear Alkil Benzena Sulfonat

<table>
<thead>
<tr>
<th>Sifat - Sifat</th>
<th>Alkil Benzena Sulfonat</th>
<th>Linear Alkil Benzena Sulfonat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titik Didih Destilasi</td>
<td>275°C</td>
<td>283°C</td>
</tr>
<tr>
<td>Titik Nyalaa</td>
<td>260°F</td>
<td>260°F</td>
</tr>
<tr>
<td>Berat Jenis</td>
<td>0,872</td>
<td>0,871</td>
</tr>
<tr>
<td>Kandungan Air</td>
<td>0,01 % berat</td>
<td><0,1 % berat</td>
</tr>
<tr>
<td>Kandungan Besi</td>
<td>< 1 ppm</td>
<td>-</td>
</tr>
<tr>
<td>Berat Molekul</td>
<td>245</td>
<td>240</td>
</tr>
<tr>
<td>Penampakan</td>
<td>terang dan jernih</td>
<td>terang dan jernih</td>
</tr>
</tbody>
</table>
Gambar 2.a. Desain Alat Proses Sublasi

Keterangan:

a. Tabung Gas Nitrogen
b. Landasan Statip
c. Botol pengkabut berisi cairan Etil Asetat
d. Penyaring karet busa (spon)
e. Larutan sampel
f. Cairan Etil Asetat
g. Klem
h. Gas keluar
Gambar 2.b. Rangkaian Alat Metoda Tekanan Maksimum Gelembung

Keterangan:
- a. Buret
- b. Manometer
- c. Pipa Kapiler
- d. Larutan Sampel
Grafik 3.a. Kurva Panjang Gelombang Maksimum

Grafik 3.b. Kurva Standarisasi Konsentrasi Surfactant

<table>
<thead>
<tr>
<th>Dependent</th>
<th>Rsq</th>
<th>d.f.</th>
<th>F</th>
<th>Sigf</th>
<th>b0</th>
<th>b1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSORBAN LIN</td>
<td>.921</td>
<td>3</td>
<td>35.13</td>
<td>.010</td>
<td>.4345</td>
<td>.0006</td>
</tr>
</tbody>
</table>