BAB II
TINJAUAN PUSTAKA

2.1. Air Buangan

Air buangan adalah suatu limbah cair dari tempat-tempat yang mengadakan aktivitas sehari-hari yang mempunyai efek negatif bagi lingkungan karena mengandung zat-zat beracun yang mengganggu keseimbangan lingkungan.

Secara umum air buangan terdiri dari dua jenis yaitu

1. Air buangan organik.
 Antara lain berasal dari air buangan penduduk (rumah tangga), industri kertas, industri makanan, Industri petrokimia dan sebagainya.

2. Air buangan anorganik.
2.2. Pengolahan Air Buangan

2.2.1. Pengolahan secara fisika.

Pengolahan secara fisika yaitu pengolahan yang dilakukan terhadap air buangan dengan bahan pencemar yang langsung dapat dipisahkan tanpa penambahan bahan kimia. Cara fisika ini antara lain:

a. Penyaringan.

Penyaringan adalah suatu proses pemisahan padatan tak terlarut yang ukurannya cukup besar melalui media porcus sehingga dapat tertahan diatas media. Alat penyaring dapat berupa kawat kasa, anyaman bambu, dan lain-lain.

b. Pengendapan.

Pengendapan adalah pemisahan partikel-partikel yang lebih berat dari air buangan dengan membiarkan air supaya tidak bergerak dan kotoran-kotoran diendapkan dengan gaya beratnya sendiri. Operasi ini sering dilakukan dalam pengolahan air buangan, misalnya untuk memisahkan pasir ataupun flok-flok hasil koagulasi.

2.2.2. Pengolahan secara kimia.

Pengolahan ini pada dasarnya untuk mengendalikan atau menghilangkan komponen yang terdapat dalam air buangan dengan penambahan bahan kimia tertentu. Pada cara ini yang dipisahkan adalah:

- Zat organik yang tidak dapat terdekomposisi
- Zat anorganik.
- Logam-logam berat.
Yang termasuk cara-cara kimia antara lain:

a. Penetralan pH (derajat keasaman).

Disini air buangan ditambah asam atau basa sesuai dengan yang dikehendaki supaya pH menjadi netral.

b. Pengendapan secara kimiawi (koagulasi dan flokulasi).

Adalah suatu proses dimana kotoran-kotoran yang dapat menyebabkan kekeruhan dalam air akan bergabung menjadi massa yang cukup besar untuk mengendap.

2.2.3. Pengolahan secara biolog.

Tujuannya adalah untuk menstabilkan bahan organik pada air buangan melalui proses oksidasi zat organik dengan bantuan mikroorganisme. Zat organik umumnya terdiri dari protein, karbohidrat, lemak dan lain-lain.

2.3. Koagulasi

Koagulasi digunakan untuk pengambilan bahan-bahan buangan dalam bentuk tersusensi atau koloid. Koloid terdapat dalam bentuk partikel dengan ukuran antara 1 nm (10⁻⁷ cm) sampai 0,1 nm (10⁻⁹ cm). Partikel ini tidak dapat mengendap dengan sendirinya dan tidak dapat diambil hanya dengan proses fisika.

Koloid-koloid yang terkandung dalam air bersifat hidropobik dan hidrofilik. Koloid-koloid hidrofobik (seperti tanah liat) tidak mempunyai afinitas terhadap air dan stabilitasnya rendah dalam larutan elektrolit.

Koloid-koloid mempunyai sifat-sifat elektrik dengan adanya gaya penolakan (repelling force) dan menegah pengumpulan serta pengendapan. Kestabilan ion akan memperkuat adsorpsi dalam lapisan, yang mengandung partikel bermuatan dengan valensi dan nomor ion yang diadsorpsi bervariasi. Ion-ion yang bermuatan saling berhadapan membentuk difusi dibagian luar lapisan dan bertahan disekitar permukaan oleh gaya elektrostatik.

2.4. Mekanisme Koagulasi

Kecepatan pengendapan dari partikel yang halus dan koloid dibawah pengaruh gravitasi saja adalah tidak cukup maka perlu untuk memakai prosedur yang mengumpulkan partikel-partikel kecil menjadi agregat-agregat yang lebih besar, yang kemudian laju pengendapan menjadi lebih besar.

Sejarahnya, istilah koagulasi dan flokulasi telah dipakai tanpa dibedakan untuk menerangkan proses penjernihan air. Meskipun demikian, ada perbedaan yang jelas antara dua istilah tersebut.

Istilah koagulasi berasal dari bahasa latin coagulare, yang berarti membawa bersama. Proses ini
menerangkan pengaruh yang dihasilkan dari penambahan bahan kimia kepada dispersi koloid yang mengakibatkan ketidakstabilan partikel oleh pengurangan gaya-gaya yang cenderung membuat partikel-partikel terpisah.

Secara operasional koagulasi dengan penambahan bahan kimia yang sesuai mengakibatkan partikel-partikel menempel bersama-sama sewaktu terjadi kontak. Pencampuran yang cepat adalah penting pada tahap ini untuk memperoleh dispersi bahan kimia yang seragam dan meningkatkan kesempatan kontak partikel dengan partikel.

Tingkat kedua dari pembentukan endapan partikel-partikel koloid yang tak stabil diistilahkan dengan flokulasi. Istilah ini juga mempunyai asal kata dari bahasa latin yaitu floculare yang berarti membentuk flok, yang secara visual menyerupai seberkas woll atau struktur dengan tingkat pori-pori dan serabut yang tinggi. Flokulasi secara operasional diperoleh dengan pencampuran perlahan dan lama sehingga mengubah partikel-partikel submikroskopik yang terkoagulasi menjadi partikel-partikel yang mempunyai kecepatan pengendapan lebih besar. Pada tahap ini partikel-partikel cukup besar untuk mengendap dengan cepat dibawah pengaruh gaya gravitasi dan dipindahkan dari suspensi tersebut dengan filtrasi. Ada usaha baru untuk menyingkat proses ini dengan mengurangi waktu flokulasi dan memperpendek atau bahkan menghilangkan waktu pengendapan, dengan demikian tergantung pada
filter-filter sebagai bagian dari proses-proses flokulasi.

Koagulasi disebabkan oleh ion-ion yang mempunyai muatan yang berlawanan dengan muatan yang terdapat pada partikel-partikel koloid dan bahwa tenaga koagulasi ion secara jelas tergantung pada valensinya.9

Suatu larutan koloid dapat dianggap stabil bila:
1. Partikel-partikel kecil, terlalu ringan untuk mengendap dalam waktu yang pendek (beberapa jam)
2. Partikel-partikel tersebut tidak dapat menyatu, bergabung dan menjadi partikel yang lebih besar dan berat.

Dengan penambahan koagulan maka kestabilan larutan pada air buangan tersebut terganggu karena molekul-molekul dari koagulan dapat menempel pada permukaan koloid dan mengubah muatan elektrisnya. Sehingga partikel-partikel membentuk agregasi awal dari partikel-partikel tidak stabil tersebut. Dengan penambahan flokulan yang disertai dengan pengadukan yang lambat untuk membentuk partikel-partikel koloid yang tidak stabil ini dan membentuk flok yang dapat mengendap dengan cepat.3'

2.5. Sifat-Sifat Koagulan

Koagulan adalah bahan-bahan kimia yang dipergunakan untuk proses pengendapan partikel-partikel koloid yang terdapat dalam air buangan. Koagulan yang biasa dipakai dalam proses ini antara lain:
a. Aluminium Sulfat

Aluminium sulfat sering disebut Alum, merupakan koagulan yang paling banyak digunakan dalam pengolahan air buangan dan mempunyai rumus kimia $\text{Al}_2(\text{SO}_4)_3 \cdot 18 \text{H}_2\text{O}$. Alum dapat diperoleh dalam bentuk cairan maupun padatan. Jika alum ditambahkan dalam air dalam suasana basa reaksinya adalah:

$$\text{Al}_2(\text{SO}_4)_3 \cdot 18 \text{H}_2\text{O} + 3 \text{Ca(OH)}_2 \rightarrow 3 \text{CaSO}_4 + 2 \text{Al(OH)}_3 + 18 \text{H}_2\text{O}$$

Reaksi-reaksi antara Alum dan berbagai air alami dipengaruhi oleh banyak faktor, maka dari itu adalah tidak mungkin memperkirakan dengan akurat jumlah alum yang akan bereaksi dengan jumlah alkalinitas yang diberikan atau kapur atau soda ash yang ditambahkan pada air. Kasus yang paling sederhana adalah reaksi ion-ion Al^{3+} dengan OH^- terjadi karena ionisasi air atau karena alkalinitas air. Larutan Alum dalam air menghasilkan:

$$\text{Al}_2(\text{SO}_4)_3 \cdot 18 \text{H}_2\text{O} \rightarrow 2 \text{Al}^{3+} + 3 \text{SO}_4^{2-} + 18 \text{H}_2\text{O}$$

Ion-ion hidroksida menjadi hasil dari ionisasi air:

$$\text{H}_2\text{O} \rightarrow \text{H}^+ + \text{OH}^-$$

Ion-ion Aluminium (Al^{3+}) kemudian bereaksi:

$$2 \text{Al}^{3+} + 6 \text{OH}^- \rightarrow 2 \text{Al(OH)}_2$$

Kebutuhan-kebutuhan ion hidroksida dalam air
mengakibatkan penurunan alkalinitas. Di mana alkalinitas air alami tidak cukup untuk jumlah Alum, kemudian alkalinitas yang ditambah harus disediakan dalam bentuk kapur hidrasi, soda abu, atau soda kaustik. Aluminium hidroksida yang mempunyai rumus kimia. $\text{Al}_2\text{O}_3\cdot\text{H}_2\text{O}$ dan bersifat amphoteir, dapat aktif dalam suasana basa maupun asam. Dalam suasana asam :

$$\text{(Al}^+\text{)}\quad \text{(OH}^-\text{)}\quad =\quad 1,9\cdot 10^{-23}$$

Dalam suasana basa, Aluminium hidroksida terdisosiasi:

$$\text{Al}_2\text{O}_3\quad +\quad 2\text{OH}^-\quad \rightarrow\quad 2\text{AlO}_2^-\quad +\quad \text{H}_2\text{O}$$

$$\text{(AlO}_2^-\text{)}\quad \text{(H}^+\text{)}\quad =\quad 4\cdot 10^{-13}$$

Flok-flok Alum larut sedikit pada pH mendekati 7. Flok akan bermuatan positif dibawah pH 7,6 dan bermuatan negatif diatas pH 8,2. Diantara batas-batas ini flok-flok yang terbentuk bermuatan campuran negatif dan positif. Alum dengan dosis tinggi digunakan pada beberapa pengolahan air buangan industri.

b. Ferro Sulfat / Coopperas

Ferro sulfat sering juga disebut dengan coopperas. Kombinasi ferro sulfat dengan kapur merupakan koagulan yang efektif untuk penjernihan air buangan yang keruh. Ferro sulfat dengan rumus kimia $\text{FeSO}_4\cdot 7\text{H}_2\text{O}$ berupa kristal berwarna putih kehijauan dapat diperoleh dari berbagai proses kimia seperti penyepuhan logam dan proses galvanisasi. Ferro sulfat juga dapat ditemukan
dalam bentuk cair. Reaksi ferro sulfat dengan kapur akan menghasilkan endapan ferro oksida.

\[
\text{FeSO}_4 \cdot 7 \text{H}_2\text{O} + \text{Ca(\text{HCO}_3\text{)})}_2 \rightarrow \text{Fe(\text{HCO}_3\text{)})}_2 + \\
\text{CaSO}_4 + 7 \text{H}_2\text{O}
\]

\[
\text{Fe(\text{HCO}_3\text{)})}_2 + 2 \text{Ca(OH)}_2 \rightarrow \text{Fe(OH)}_2 + 2 \text{CaCO}_3 + 2 \text{H}_2\text{O}^{15}
\]

2.5. Faktor-faktor Yang Mempengaruhi Koagulasi

Faktor-faktor yang mempengaruhi koagulasi antara lain

a. Efek pH

b. Efek garam

Pengaruh garam pada koagulasi untuk merubah beberapa point yang dapat disebutkan satu-persatu dibawah ini:
- Rentang pH untuk koagulasi.
- Waktu flokulasi.
- Dosis koagulan optimum.
- Sisa koagulan dalam air setelah pengolahan.
c. Efek pengadukan

Pengadukan yang cepat dibutuhkan pada penambahan koagulan agar distribusi koagulan lebih merata. Pada tahap kedua pengadukan dimaksudkan untuk proses koagulasi dengan kecepatan rendah untuk menghasilkan kesatuan dari koloid-koloid yang tidak stabil.

2.7. Kebutuhan Oksigen Kimiawi (COD)

Chemical Oxygen Demand (COD) atau kebutuhan oksigen kimiawi (KOK) adalah jumlah oksigen (mg O₂) yang dibutuhkan untuk mengoksidasi zat-zat organik yang ada dalam satu liter sampel air, dimana pengoksidasi K₂Cr₂O₇ digunakan sebagai sumber oksigen. Prinsip analisanya adalah sebagai berikut:

Sebagian besar zat organik melalui tes COD ini dioksidasi oleh larutan K₂Cr₂O₇ dalam keadaan asam yang mendidih, reaksi:

\[
\text{CaHbOc} + \text{Cr}_2\text{O}_7^{2-} + \text{H}^+ \xrightarrow{E\text{Ag}_2\text{SO}_4} \text{CO}_2 + \text{H}_2\text{O} + \text{Cr}^{3+}
\]

(warna kuning) (warna hijau)

Reaksi berlangsung selama 2 jam, kemudian uap direfluks, agar zat organik yang mudah menguap tidak keluar. Perak sulfat Ag₂SO₄ ditambahkan sebagai katalisator untuk mempercepat reaksi. Sedang merkuri sulfat ditambahkan untuk menghilangkan gangguan klorida yang pada umumnya ada dalam air buangan.

Untuk memastikan bahwa hampir semua zat organik
habis teroksidasi maka zat pengoksidasi $K_2Cr_2O_7$ yang tersisa didalam larutan tersebut digunakan untuk menentukan berapa oksigen yang telah terpakai. Sisa $K_2Cr_2O_7$ tersebut ditentukan melalui titrasi dengan Ferro Amonium Sulfat (FAS) dimana reaksi yang berlangsung adalah :

$$6 \text{Fe}^{2+} + \text{Cr}_2\text{O}_7^{2-} \rightarrow 6 \text{Fe}^{3+} + 2 \text{Cr}^{3+} + 7 \text{H}_2\text{O}$$

Indikator feroin digunakan untuk menentukan titik akhir titrasi yaitu disaat warna hijau biru larutan berubah menjadi oklat merah. Sisa $K_2Cr_2O_7$ dalam larutan blangko adalah $K_2Cr_2O_7$ awal, karena blangko tidak mengandung zat organik yang dapat dioksidasi oleh $K_2Cr_2O_7$.

2.8. Total Suspended Solid (TSS)

Zat padat - zat padat yang berada dalam suspensi dapat dibedakan menurut ukurannya sebagai : partikel tersuspensi koloidal (partikel koloid) dan partikel tersuspensi biasa (partikel tersuspensi).

Jenis partikel koloid tersebut adalah penyebab kekeruhan dalam air (efek tyndall) yang disebabkan oleh penyimpangan sinar yang menembus suspensi tersebut. Partikel-partikel koloid ini tidak terlihat secara visual sedangkan larutannya (tanpa partikel koloid) yang terdiri dari ion-ion dan molekul-molekul tidak pernah keruh. Larutan menjadi keruh bila terjadi pengendapan (presipitasi) yang merupakan keadaan jenuh dari suatu
senyawa kimia. Partikel-partikel tersuspensi biasa, mempunyai ukuran ukuran lebih besar dari partikel koloid dan dapat dikatakan keruh, karena sebenarnya air diantara partikel-partikel tersuspensi tidak keruh dan sinar tidak menyimpan.

Seperti halnya ion-ion dan molekul-molekul (zat yang terlarut), zat padat koloidal dan zat padat tersuspensi dapat bersifat anorganis (tanah liat, kwarts) dan organis (protein, sisa tanaman dan ganggang, bakteri).

Dalam metode analisa zat padat, pengertian zat padat total adalah semua zat-zat yang tersisa sebagai residu dalam suatu bejana, bila sampel air dalam bejana tersebut dikerlingkan pada suhu tertentu. Zat padat total terdiri dari zat padat terlarut dan zat padat tersuspensi yang dapat bersifat organis dan anorganis. Zat padat tersuspensi dapat diklasifikasikan lagi menjadi zat padat terapung yang selalu bersifat organis dan zat padat terendapkan yang dapat bersifat organis dan anorganis. Kehadiran zat padat terapung ini harus diperhitungkan karena padatan ini akan terbawa larutan dan akan menambah konsentrasri padatan dalam perairan yang menerima air limbah, dan akan mengakibatkan kekeruhan. Kekeruhan akan menghambat penembusan sinar matahari. Sinar ultraviolet dibutuhkan oleh mikroorganisme dan fitoplankton untuk reaksi fotosintesis terhambat, maka penambahan oksigen terlarut tidak akan berlangsung maksimal dan jumlah
2.9. Teori Tentang Tahu Dan Pengolahannya

Bahan dasar pembuatan tahu adalah kedelai dimana kedelai mengandung beberapa macam senyawa yang masing-masing mempunyai komposisi yang berbeda-beda. Antara lain mengandung protein rata-rata 35%, lemak 18% - 20% dan 85% dari jumlah tersebut terdiri dari asam lemak tak jenuh yang bebas kolesterol, selain itu kedelai juga mengandung karbohidrat sebanyak 35% dan masih banyak senyawa-senyawa kimia lain dalam kedelai misalnya vitamin, mineral, serat kedelai, dan sebagainya.

Dari semua senyawa-senyawa kimia yang terdapat dalam kedelai senyawa yang paling penting pengaruhnya dalam pembuatan tahu adalah protein. Hal itu disebabkan karena tahu merupakan produk yang terbuat dari hasil penggumpalan protein dalam kedelai. Pada dasarnya proses pembuatan tahu terdiri dari 2 proses yaitu pembuatan susu kedelai dan penggumpalan proteininya. Sebagai penggumpal secara tradisional biasanya digunakan biang yaitu cairan yang keluar pada waktu pengepresan dan sudah diasamkan semalam. Sebagai pengganti dapat digunakan air jeruk, cuka, larutan asam laktat, larutan CaCl	extsubscript{2} atau CuSO	extsubscript{4}.

Prosedur pembuatannya adalah sebagai berikut:

1. Kedelai yang berkualitas baik dipilih dan dibersihkan
dari kotoran sehingga kedelai bersih sebelum direndam.
3. Kedelai kemudian dikupas dan dilakukan penggilingan dengan penambahan air antara 8 - 10 berat kedelai. Penggunaan air panas 80 - 100°C dapat menginaktifkan enzim lipoksigenase penyebab bau langu, serta memperbanyak rendemen.
5. Penggumpalan dilakukan dengan penambahan batu tahu atau biang. Dalam hal ini harus diperhatikan kecepatan penambahannya.
6. Gumpalan (curd) protein kedelai selanjutnya dicetak dan diperas (dipres). Akhirnya dilakukan pemotongan
sesuai dengan ukuran yang dikehendaki.

2.10. Buangan Industri Tahu

Umumnya Industri tahu menggunakan banyak air untuk proses maupun untuk pencucian alat dan biji kedelai. Sebagian besar setelah digunakan untuk proses air dibuang langsung ke lingkungan. Perkiraan jumlah air buangan yang dikeluarkan oleh industri tahu setiap kwintal kedelai (bahan baku) dikeluarkan 1,5 - 2 meter kubik air limbah. Disamping cair juga dikeluarkan limbah padat (ampas), dan kulit kedelai pada saat perendaman.

a. Buangan padat

Fabrik tahu membuang buangan padat pada saat pencucian yaitu berupa biji yang jelek, ceceran biji, dan batu kerikil yang terikut dalam biji. Pada saat kedelai diproses menjadi susu kedelai dan disaring mengeluarkan ampas. Pemanfaatan limbah padat pada saat sekarang adalah untuk makanan ternak juga dapat dibuat untuk tempe sebagai makanan yang enak untuk dimakan. Ternak yang diberi makanan ampas tahu biasanya sapi, kerbau, kambing, babi dan ikan."
b. Buangan cair

Seperti telah diutarak diatas bahwa sebagian besar dari buangan pabrik tahu adalah limbah cair dan limbah ini mengandung sisa air dari susu tahu yang tidak tergumpal menjadi tahu. Oleh karena itu limbah cair pabrik tahu masih mengandung zat-zat organik misalnya protein, karbohidrat dan lemak. Disamping mengandung zat terlarut juga mengandung padatan tersuspensi atau padatan terendapkan misalnya potongan tahu yang hancur pada saat pemrosesan karena kurang sempurna pada saat penggumpalannya. Padatan tersuspensi maupun terlarut di alam mengalami perubahan fisika, kimia, dan hayati yang menghasilkan zat toksik atau menciptakan tumbuhnya kuman lainnya dapat berwujud kuman penyakit atau kuman lainnya yang merugikan makhluk sekitarnya. Ciri lain apabila dibiarkan dalam lingkungan air limbah berubah warnanya menjadi coklat kehitaman dan berbau busuk. Perubahan warna ini keadaannya menjadi septik dan kadar oksigen dalam genangan air, misalnya sumur maka kemungkinan akan merembes dan sumur akan berubah fungsinya dan tidak dapat dimanfaatkan lagi.

Proses pembuatan tahu dapat dilihat pada skema berikut.
Skema : Proses pembuatan tahu

Pemilihan kedelai

Perendaman kedelai

Pencucian kedelai

Penggilingan kedelai

Perebusan kedelai

Penyaringan sari pati kedelai

(dicampur dengan asam cuka dan batu tahu)

air asam dipisahkan

pencetakan tahu

Siap kirim / packing

air

air

asam cuka

limbah cair

limbah cair

→ hasil samping

(ampas tahu)

limbah cair