BAB II
DASAR TEORI

2.1. PEMBANGKITAN PANAS DALAM BAHAN BAKAR

Panas yang dibangkitkan dalam bahan bakar berasal dari reaksi fisik antara neutron \(n \) dengan inti bahan fisil. Reaksi fisik adalah suatu reaksi pembelahan inti atom yang disebabkan oleh neutron yang ditangkap oleh isotop-isotop dapat belah (\(U^{235} \), \(Pu^{239} \)). Reaksi fisik yang terjadi secara umum dapat dituliskan sebagai berikut (Prayoto, 1978):

\[
X + n \rightarrow X_1 + X_2 + (2 \text{ atau } 3) \ n + E
\]
(R-1)

Reaksi (R-1) menunjukkan reaksi fisik antara inti bahan fisil \(X \) dengan neutron yang menghasilkan dua inti baru \((X_1 \text{ dan } X_2) \) sebagai hasil fisik yang tidak stabil, 2 atau 3 neutron baru dan disertai dengan pembesaran energi fisik \(E \) sebesar 200 MeV. Kira-kira 85% dari seluruh energi yang dibebaskan dari reaksi fisik dibebaskan dalam bentuk energi gerak hasil-belahan fisik dan sebagian kecil dalam bentuk energi radiasi gamma. Hasil-belahan dengan energi yang tinggi kemudian bereaksi dengan inti-inti atom yang berada di sekitarnya, sehingga kehilangan sebagian dari energi yang dibebaskan dalam bentuk panas. Energi gerak hasil-belahan mempunyai jejak yang pendek sehingga energi ini dianggap dibebaskan sebagai panas dalam bahan bakarnya sendiri. Khusus energi radiasi gamma yang memiliki jangkauan tembus yang besar akan merambat dan berinteraksi gamma-materi, yang dalam interaksi tersebut radiasi...
gamma akan kehilangan sebagian atau seluruh energinya menjadi panas di dalam
material tempat berinteraksi.

Laju pembangkitan panas per satuan volume bahan bakar yang terjadi dari
suatu pembelahan yaitu panas volumetrik \(q'' \) berbanding lurus dengan besarnya
energi fisii yang berubah menjadi energi panas \(Q \) yang besarnya \(\pm 180 \text{ MeV} \), rapat
atom bahan fisil \((N_f) \), luas penampang pembelahan mikroskopis bahan fisil \((\sigma_f) \)
dan banyaknya fluks neutron \((\phi) \), yang dirumuskan sebagai berikut (El-Wakil, 1978):

\[
q'' = QN_f\sigma_f\phi
\]

(2-1)

dengan \(N_f = \frac{A_\nu \times \rho_f \times i}{M_f} \) (El-Wakil, 1978), \(A_\nu \) adalah bilangan Avogadro yang
besarnya 0,60225x10\(^{24}\) molecule /(gr/mol), \(M_f \) adalah massa molekul dari bahan
bakar fisil, \(\rho_f \) adalah densitas dari bahan bakar fisil (gr/cm\(^3\)) dan \(i \) adalah jumlah
atom fisil dalam molekul bahan bakar. Rapat atom \(N_f \) bergantung pada jenis
bahan bakar, sedang luas penampang lintang mikroskopik \(\sigma_f \) bergantung pada
jenis bahan bakar dan energi neutron, untuk harga \(N_f \) tertentu, maka daya panas
volumetrik berbanding langsung dengan fluks neutron \(\phi \).

Panas volumetrik yang dibangkitkan dalam inti bahan bakar kemudian
dihantarkan ke permukaan bahan bakar. Besarnya panas \((q) \) yang dihantarkan ke
permukaan bahan bakar berbentuk silinder dengan jari-jari \(R \) dan panjang \(L \) dapat
dihitung dengan persamaan sebagai berikut (Prayoto, 1978):

\[
q = \pi R^2 L q''
\]

(2-2)
Banyaknya hantaran panas \(q \) tiap satuan luas permukaan hantaran \(A \) bahan bakar, yaitu fluks panas \((q^\prime) \) dirumuskan sebagai berikut (Prayoto, 1978):

\[
q^\prime = q/A
\]

(2-3)

Substitusi persamaan (2-2) ke dalam persamaan (2-3) maka diperoleh persamaan sebagai berikut:

\[
q^\prime = \frac{q^\prime \pi R^2 L}{A} = \frac{q^\prime V}{A}
\]

(2-4)

dengan \(V \) adalah volume bahan bakar fisil, untuk bahan bakar berbentuk silinder besarnya adalah \(\pi R^2 L \).

2.2. PERPINDAHAN PANAS DENGAN PERUBAHAN FASE

Fluks panas yang sangat tinggi dalam reaktor nuklir dapat menyebabkan perubahan fase dalam pendingin. Proses perpindahan panas dengan perubahan fase terjadi karena adanya perubahan dari fase cair menjadi uap karena proses penguapan dan dapat pula terjadi karena adanya pendidihan. Tipe pendidihan yang sesuai untuk RSG – G. A. Siwabessy adalah bentuk pendidihan kolam, karena sesuai dengan tipe reaktor RSG – G. A. Siwabessy yaitu kolam terbuka dengan tekanan atmosfir (Hastuti, 2000).

2.2.1. Pendidihan Kolam

Pada pendidihan kolam, uap terbentuk karena panas yang dihantarkan dalam pendingin dari permukaan panas yang terendam dalam fluida pendingin. Rejim pendidihan kolam diberikan pada Gambar 2.1.

Gambar 2.1. menunjukkan kurva flus panas \((q^*) \) pada permukaan pembangkit panas versus perbedaan temperatur antara temperatur permukaan pembangkit panas dengan temperatur fluida *bulk* \((T_s - T_f) \). Dari kurva dapat dibedakan menjadi beberapa daerah perpindahan panas yaitu :

a) Daerah o-a : Terdapat sedikit fluida yang mengalami pemanasan lanjut perpindahan panas terjadi secara konveksi alami.

b) Daerah a-b : Mulai terbentuk beberapa inti gelembung yang kemudian lenyap setelah meninggalkan permukaan pembangkit panas.

c) Daerah b-c : Pembentukan inti gelembung berlangsung dengan cepat dan perpindahan panas menjadi lebih efektif dengan adanya pembentukan gelembung inti hingga mencapai awal titik c, disebut dengan rejim pendidihan inti.
d) Titik c : Titik burnout atau dicapainya akhir pendidihan inti (Departure from Nucleate Boiling /DNB), pada titik ini flus panas mencapai harga maksimum dan disebut flus panas kritis.

e) Daerah c-d : Inti pendidihan sangat tinggi hingga menyebabkan terbentuknya uap berbentuk film yang menutupi permukaan pembangkit panas.

f) Daerah d-e : Terbentuknya uap berbentuk film yang kontinyu pada permukaan pembangkit panas dan disebut reji pendidihan film.

g) Daerah c-f : Timbul radiasi panas dari permukaan pembangkit panas ke film yang menutupi permukaan pembangkit panas karena hanya tinggal uap pada lapisan film dan disebut reji radiasi.

Flus panas q'' merupakan variabel yang tidak bergantung pada temperatur bulk, peningkatan flus panas sebelum mencapai titik DNB akan menghasilkan peningkatan temperatur permukaan pembangkit panas yang cukup besar yang diberikan ke pendingin. Keadaan ini disebut burnout dan harus dihindari pada pengoperasian reaktor (Duderstadt, Hamilton, 1975).

2.2.2. Pendidihan Aliran

Rejim perpindahan panas di dalam kanal yang berisi fluida mengalir yang mengalami pendidihan ditunjukkan dalam Gambar 2.2. Gambar tersebut merupakan contoh perpindahan panas di dalam pipa dengan arah aliran pendingin vertikal ke atas dan pembangkitan panas ke arah aksial dianggap seragam.

Fluida pendingin masuk ke dalam pipa dalam keadaan subcooled dengan temperatur masukan fluida pendingin lebih kecil daripada temperatur jenuh fluida
pendingin \((T_{in} < T_{sat})\). Temperatur pendingin bertambah akibat menerima panas dari dinding pipa. Pada ketinggian tertentu di dalam pipa, fluida di dekat dinding menjadi superheated dan terbentuk inti gelembung uap dengan temperatur pendingin bulk masih dalam keadaan subcooled. Temperatur pendingin bulk terus

Gambar 2.2. Diagram perpindahan panas konveksi di dalam pipa.
(Todreas, Kazimi, 1990)

Jika fluks panas sangat tinggi maka laju pembangkitan uap di dalam rejim pendidih inti menjadi sangat tinggi pula sehingga terjadi pemisahan antara lapisan uap dan cairan pendingin dari dinding. Situasi ini menyebabkan terjadinya akhir pendidihan inti yang sesuai dengan kondisi fluks panas kritis pada pendidihan kolam (Hastuti, 2000).

Fluks panas harus berada dalam rejim pendidihan inti dan jauh di bawah fluks panas kritis untuk menghindari terjadinya burnout. Salah satu korelasi fluks panas bornout yang berlaku untuk berbagai kondisi operasi yang terdapat di dalam reaktor nuklir adalah korelasi yang dikembangkan oleh Westinghouse
dengan batas \((0.2 \times 10^6 \text{ lbm} / \text{ft}^2 \text{ hr} \leq G \leq 8 \times 10^6 \text{ lbm} / \text{ft}^2 \text{ hr})\) yang dirumuskan sebagai berikut (Prayoto, 1976):

\[
q_e'' = 0.28 \times 10^6 \left(\frac{h_e}{1000} \right)^{-2.5} \left(1 + \frac{G}{10^7} \right)^2 e^{-0.0012L} / D
\]

(2-5)

dengan \(q_e''\) adalah fluks panas kritis, \(G\) adalah kecepatan massa air, \(h_e\) adalah entalpi campuran air pada titik bornout, \(D\) adalah diameter saluran dan \(L\) adalah jarak dari titik masuk sampai titik bornout.

2.3. BATAS KESELAMATAN PENGOPERASIAN REAKTOR

Faktor keselamatan dari segi termohidrolika merupakan salah satu parameter pembatas pengoperasian reaktor. Batas keselamatan yang digunakan diantaranya adalah batas keselamatan terhadap instabilitas aliran dan batas keselamatan terhadap rejim akhir pendidihan inti. Batas keselamatan tersebut erat kaitannya dengan besarnya fluks panas pada suatu titik di sepanjang bahan bakar.

2.3.1. Batas Keselamatan terhadap Instabilitas Aliran

Instabilitas aliran menggambarkan perubahan mendadak aliran pendingin melalui kanal yang dipanasi. Perubahan ini terjadi karena adanya transisi karakteristik penurunan tekanan dari aliran fase tunggal ke aliran dua fase atau sebaliknya. Batas keselamatan terhadap instabilitas aliran merupakan fenomena yang berkaitan dengan watak pembangkitan gelembung uap pada permukaan bidang yang dipanaskan secara pendidihan di bawah titik jenuh. Selama inti-inti gelembung masih menempel pada permukaan pelat, maka inti gelembung secara

$$\eta = \frac{[T_b(z) - T_c(z)] \times v(z)}{q''(z)}$$ \hspace{1cm} (2-6)

dengan T_b adalah temperatur jenuh pendingin, T_c adalah temperatur pendingin bulk, v adalah kecepatan pendingin, q'' adalah flus panas dan z adalah jarak dari sisi masuk kanal pendingin.

Laju aliran di kanal akan stabil jika parameter η pada setiap titik di sepanjang kanal pendingin melampaui harga η_c. Harga η_c diperoleh dari data statistik dalam Safety Analysis Report yang diberikan pada LAMPIRAN A. Harga instabilitas aliran (S) dinyatakan dengan (Anonim, 1989):

$$S = \frac{\eta}{\eta_c}$$ \hspace{1cm} (2-7)

2.3.2. Batas Keselamatan terhadap Rasio Akhir Pendidihan Inti (DNBR)

Parameter karakteristik pada keselamatan terhadap akhir pendidihan inti (DNB) adalah minimum departure from nucleate boiling ratio (MDNBR). DNBR didefinisikan (Anonim, 1998) sebagai perbandingan antara flus panas kritis
1998) sebagai perbandingan antara fluks panas kritis dengan fluks panas lokal, yang dituliskan dengan persamaan sebagai berikut (Duderstadt, Hamilton, 1975):

\[DNBR = \frac{q''(z)}{q''(z)} \]

(2-8)

Harga DNBR minimum harus lebih besar dari 1,3 untuk operasi reaktor pada daya lebih (Todreas, Kazimi, 1990). DNBR minimum secara umum harus lebih besar dari 1 (Stewart, 1977).

2.4. Persamaan-Persamaan Dasar yang Mengatur Volume Kendali pada Analisis Subkanal dalam Program Cobra IV-I

Program COBRA IV-I menggunakan konsep dasar analisis subkanal. Analisis subkanal adalah salah satu metoda yang dapat digunakan dalam menyelesaikan persolan untuk aliran di dalam banyak kanal yang terhubung secara kontinyu di sepanjang kanal. Subkanal secara aksial dibagi menjadi volume-volume kendali yang diskrit. Pada tiap volume kendali diterapkan persamaan-persamaan kekekalalan massa, kekekalalan momentum dan kekekalalan energi.

Karacteristik termohidrolika sepanjang target di dalam teras reaktor yang didinginkan oleh fluida dicari dengan menyelesaikan secara simultan persamaan-persamaan massa, energi dan momentum di dalam volume kendali. Persamaan-persamaan tersebut disusun berdasarkan persamaan-persamaan kekekalalan massa, kekekalalan momentum dan kekekalalan energi dengan menggunakan anggapan-anggapan (Stewart, 1977):
a) Fluida merupakan komponen tunggal yang dapat terdiri dari atas campuran dua fase dalam keadaan kesetimbangan termohidrolika.

b) Perubahan energi kinetik sangat kecil dibandingkan perubahan energi panas internal.

c) Usaha yang dilakukan oleh gaya benda dan tegangan geser dapat diabaikan.

d) Pembangkitan panas internal dalam fluida dapat diabaikan.

e) Gaya benda yang ada hanyalah gaya gravitasi.

Berdasarkan anggapan-anggapan di atas maka bentuk persamaan-persamaan dasar yang diterapkan adalah sebagai berikut:

1. Persamaan Massa

Prinsip kesetimbangan massa menyatakan (Todreas, Kazimi, 1990) bahwa laju perubahan massa dalam volume kendali ditambah laju aliran massa yang keluar melalui permukaan kendali berharga nol. Fluida yang mengalir di dalam volume kendali dianggap komponen tunggal, sehingga massa sistem tidak berubah.

Bentuk mendasar persamaan massa yang diterapkan dalam volume kendali pada program COBRA IV-I berdasarkan hukum kesetimbangan massa adalah sebagai berikut (Stewart, 1977):

$$\frac{\partial}{\partial t} \int_{V} \rho dV + \int_{F} \rho (\vec{u} \cdot \vec{n}) dA = 0$$ \hspace{1cm} (2-9)

dengan ρ adalah densitas fluida, t adalah waktu, \vec{u} adalah kecepatan fluida, \vec{n} adalah vektor normal satuan, A adalah luas permukaan kendali dan indeks F menyatakan permukaan kendali.
Suku pertama pada ruas kiri persamaan (2-9) merupakan laju kenaikan massa dalam volume kendali \(V \). Suku kedua menyatakan laju aliran massa yang keluar melalui permukaan kendali \(F \).

2. Persamaan Energi

Prinsip kesetimbangan energi menyatakan bahwa laju perubahan entalpi sama dengan laju entalpi yang masuk volume kendali dikurangi laju entalpi yang keluar melalui permukaan kendali ditambah laju netto penambahan panas dikurangi laju netto kerja yang dilakukan sistem terhadap lingkungan. Kerja yang dilakukan sistem terhadap lingkungan diabaikan, sehingga bentuk mendasar persamaan energi yang diterapkan dalam volume kendali pada subkanal dalam program COBRA IV-I adalah sebagai berikut (Stewart, 1977):

\[
\frac{\partial}{\partial t} \int_V \rho h \, dv + \int_{\partial V} \rho h (u \cdot \hat{n}) \, dA = -\int_{\partial V} K (\nabla T \cdot \hat{n}) \, dA + \int_{\partial V} H (T_w - T_F) \, dA
\]

(2-10)
dengan \(h \) adalah entalpi fluida, \(K \) adalah konduktivitas panas fluida, \(H \) adalah koefisien perpindahan panas permukaan dan \(T \) adalah temperatur dengan \(T_w \) menyatakan temperatur permukaan benda padat, sedangkan \(T_F \) menyatakan temperatur fluida.

Suku pertama pada ruas kiri persamaan (2-10) menyatakan laju perubahan entalpi, dan suku kedua menyatakan laju entalpi yang keluar melalui permukaan kendali \(F \). Ruas kanan persamaan tersebut menyatakan laju netto penambahan panas.
3. Persamaan Momentum

Prinsip kesetimbangan momentum menyatakan (Todreas, Kazimi, 1990) bahwa laju perubahan momentum dalam volume kendali sama dengan laju momentum masuk volume kendali dikurangi laju momentum keluar melalui permukaan kendali ditambah jumlah gaya yang bekerja pada volume kendali. Berdasarkan prinsip kesetimbangan momentum tersebut maka bentuk mendasar persamaan momentum yang diterapkan dalam volume kendali pada subkanal dalam program COBRA IV-I adalah sebagai berikut (Stewart, 1977):

$$\frac{\partial}{\partial t} \int \rho \vec{v} dV + \int \rho \vec{a} \cdot (\vec{u} \cdot \hat{n}) dA = \int \rho \vec{g} dV - \int \rho \vec{v} dA + \int \left(\vec{p} \cdot \hat{n} \right) dA - \int \rho \vec{v} dA + \int \left(\vec{F} \cdot \hat{n} \right) dA \quad (2-11)$$

dengan \vec{g} adalah gaya gravitasi, p adalah tekanan fluida dan \vec{F} adalah tegangan kental fluida.

Suku pertama pada ruas kiri persamaan (2-11) menyatakan laju perubahan momentum yang terjadi dalam volume kendali, dan suku kedua menyatakan laju momentum yang keluar melalui permukaan kendali. Ruas kanan persamaan tersebut menyatakan jumlah gaya yang bekerja pada volume kendali, yang terdiri dari gaya gravitasi, tegangan permukaan dan tegangan kental fluida.

Persamaan-persamaan dasar yang mengatur volume kendali tersebut kemudian diterapkan pada subkanal dalam program COBRA IV-I dan penyelesaian simultan persamaan-persamaan integral tersebut di dalam paket program COBRA IV-I dilakukan dengan menggunakan cara numerik, yaitu menggunakan metoda beda hingga seperti diberikan pada LAMPIRAN B.