BAB II
DASAR TEORI

2.1 Dasar-dasar Spektroskopi Molekuler

Energi molekuler ditimbulkan oleh rotasi (perputaran) molekul secara keseluruhan dan vibrasi (getaran) atom pembangun relatif terhadap yang lain serta oleh perubahan konfigurasi elektronik. Aras tenaga rotasional terpisah oleh selang energi sekitar 10^3 eV dan spektrumnya terdapat dalam daerah gelombang mikro. Aras tenaga vibrasional terpisah oleh selang energi sekitar $0,1 \text{ eV}$ dan spektrumnya terdapat dalam daerah inframerah $(10^5 \delta < \lambda < 10^6 \delta)$. Aras tenaga elektronik molekuler memiliki energi sampai beberapa eV dan spektrumnya terdapat dalam daerah cahaya tampak dan daerah ultraungu (Beiser, 1991).

2.1.1 Energi rotasional (Svanberg, 1992)

Tingkat energi terendah molekul diatomik timbul dari rotasi di sekitar pusat massanya. Ditinjau perputaran suatu molekul diatomik (Gambar 1) dengan momen kelembaman terhadap sumbu rotasi adalah I mengikuti persamaan:

$$I = m_1 r_1^2 + m_2 r_2^2$$ (1)

dengan m_1 adalah massa atom pertama, m_2 adalah massa atom kedua, r_1 dan r_2 masing-masing adalah jarak atom pertama dan atom kedua ke pusat massa.

5
Momen kelembaman ini dapat ditulis pula melalui persamaan:

\[I = \frac{m_1 m_2}{m_1 + m_2} \left(r_1 + r_2 \right)^2 = m' R^2 \]

(2)

dengan \(m' = \frac{m_1 m_2}{m_1 + m_2} \) dan \(R = r_1 + r_2 \)

\(m' \) adalah massa tereduksi dan \(R \) adalah jarak antaratom.

![Diagram molecule diatomic](image)

Menurut pendekatan semiklasik, momentum sudut \(L \) dan energi \(E \) ditunjukkan oleh:

\[
\begin{align*}
L &= \frac{I \omega}{\hbar} \\
E &= \frac{I \omega^2}{2I}
\end{align*}
\]

\(\Rightarrow E = \frac{L^2 \hbar^2}{2I} \)

(3)

dengan \(\omega \) adalah frekuensi sudut dan \(\hbar \) adalah konstanta Planck. Dalam mekanika kuantum, jika bilangan kuantum rotasional diberi lambang \(J \), maka momentum sudut \(L \) dinyatakan dengan:

\[|L| = \sqrt{J(J+1)} \], \quad J = 0, 1, 2, \ldots \]

(4)
Sehingga energi terkuantisasi E_J dari rotator menjadi:

$$E_J = \frac{J(J+1)\hbar^2}{2I}$$ \hspace{1cm} (5)$$

Bila molekul dieksitasi ke suatu tingkat rotasi yang tinggi, molekul tersebut akan turun kembali ke keadaan dasarnya dengan memancarkan foton-foton yang berkaitan dengan transisi rotasi yang bersangkutan.

Aturan seleksi untuk foton-foton ini adalah:

$$\Delta J = \pm 1$$ \hspace{1cm} (6)$$

Spektrum rotasional dapat merupakan spektrum absorpsi atau emisi, sehingga setiap transisi yang terjadi berupa perubahan keadaan awal bilangan kuantum J ke bilangan kuantum lebih tinggi berikutnya ($J + 1$) atau sebaliknya. Dalam kasus molekul tegar, frekuensi foton yang diserap atau dipancarkan adalah:

$$\Delta E = E_{J+1} - E_J = \frac{(J+1)(J+2)\hbar^2}{2I} - \frac{J(J+1)\hbar^2}{2I} = \frac{(J+1)\hbar^2}{I}$$ \hspace{1cm} (7)$$

Dalam bentuk bilangan gelombang (cm^{-1}), energi dalam suatu aras rotasional pada suatu pita vibrasional diberikan oleh persamaan (Nur, 1997):

$$F_v(J) = B_vJ(J+1) - D_vJ^2(J+1)^2$$ \hspace{1cm} (8)$$

dengan

$$B_v = B_e - \alpha_e (v + \frac{1}{2}) + ...$$

$$D_v = D_e + \beta_e (v + \frac{1}{2}) + ...$$
B_{v} adalah konstanta rotasional pada suatu pita vibrasional, B_e adalah konstanta rotasional setimbang, D_{v} adalah konstanta rotasional akibat pengaruh gaya distorsi sentrifugal dan D_e adalah konstanta distorsi sentrifugal keadaan setimbang.

$$B_e = \frac{h}{8\pi^2 m' c r_c^2}$$
$$D_e = \frac{4B_e^3}{\omega_e^2}$$

r_e adalah jarak antar-inti molekul setimbang, m' adalah massa tereduksi, dan ω_e adalah frekuensi fundamental vibrasi.

Deretan tingkat rotasi dan transisi antara masing-masing tingkatan energi ditunjukkan dalam Gambar 2.

Gambar 2 Tingkat energi dan spektrum rotasi molekuler (Beiser, 1991).

2.1.2 Energi vibrasional (Banwell, 1983)

Jika cukup tereksitas, maka molekul dapat bergetar (bervibrasi) seperti halnya berotasi. Dianggap dua atom pada molekuler saling berikatan seperti sebuah per, maka menurut hukum Hooke:

$$F = -kx = -k(r - r_e)$$
\[(9) \]
dengan F adalah gaya pegas atau gaya di antara dua atom, k adalah konstanta pegas, $r - r_e$ adalah jarak antara dua atom.

![Diagram](image)

Gambar 3. Energi potensial molekul diatomik sebagai fungsi jarak antar-inti. (Hollas, 1992)

Energi potensial $V(r)$ yang ditimbulkan mengikuti persamaan:

$$F = V(r) = \frac{1}{2} k x^2 = \frac{1}{2} k (r - r_e)^2$$ \hspace{1cm} (10)

Sedangkan aturan seleksi untuk tingkat energi vibrasional yaitu:

$$\Delta \nu = \pm 1$$ \hspace{1cm} (11)

Jika diperhitungkan koreksi nonharmonik, energi potensial menjadi (Bernath, 1995):

$$V(r) = \frac{1}{2} k (r - r_e)^2 + \frac{1}{6} k_3 (r - r_e)^3 + \frac{1}{24} k_4 (r - r_e)^4 + \ldots$$ \hspace{1cm} (12)

dengan

$$k = \left. \frac{d^2 V}{dr^2} \right|_{r_e}$$

$$k_n = \left. \frac{d^n V}{dr^n} \right|_{r_e}$$

Dengan hanya menerima suku pertama $\frac{1}{2} k (r - r_e)^2$ dalam perkembangannya untuk molekul tidak berotasi ($J = 0$), diperoleh penyelesaian osilator harmonik:

$$S = N_\nu H_\nu \left(\sqrt{\alpha \cdot \lambda} \right) e^{(-\alpha \omega^2)/2}$$ \hspace{1cm} (13)
dengan

\[x = r - r_0, \quad \alpha = \frac{m'\omega}{\hbar}, \quad N_\nu = \left[\frac{1}{2^n n!} \left(\frac{\alpha}{\pi} \right)^{1/2} \right] \]

Fungsi \(H_\nu(\alpha^{1/2}x) \) adalah polinomial Hermite yang terdapat pada tabel 1. Nilai-eigen untuk osilator harmonik tidak berotasi adalah

\[E_\nu = h \nu (\nu + \frac{1}{2}), \quad \nu = 0, 1, 2, 3, \ldots \quad (14) \]

dengan

\[\omega = \left(\frac{k}{m'} \right)^{1/2}, \quad \nu = \frac{1}{2\pi} \left(\frac{k}{m'} \right)^{1/2} \]

Tabel 1. Polinomial Hermite \(H_\nu(x) \)

<table>
<thead>
<tr>
<th>(H_0)</th>
<th>(H_1)</th>
<th>(H_2)</th>
<th>(H_3)</th>
<th>(H_4)</th>
<th>(H_5)</th>
<th>(H_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2x</td>
<td>(4x^2 - 2)</td>
<td>(8x^3 - 12x)</td>
<td>(16x^4 - 48x^2 + 12)</td>
<td>(32x^3 - 160x^2 + 120x)</td>
<td>(64x^6 - 480x^4 + 720x^2 - 120)</td>
</tr>
</tbody>
</table>

Bentuk sederhana fungsi potensial adalah potensial Morse, yaitu:

\[V(r) = D \left(1 - e^{-\beta (r - r_0)}\right)^2 \quad (15) \]

Potensial Morse secara asimtotik mendekati batas dissosiasi \(V(r) = D \) jika \(r \to \infty \). Lebih dari itu, persamaan Schrödinger dapat diselesaikan secara analitik untuk potensial Morse. Secara khusus, hal ini menunjukkan bahwa nilai-eigen potensial Morse (ditambah sentrifugal) dapat ditulis sebagai (cm\(^{-1}\)):

\[
\frac{E}{hc} = \omega_e (\nu + \frac{1}{2}) - \omega_e \nu_e (\nu + \frac{1}{2})^2 + B[I(J+1)]^2 - D[I(J+1)]^2 - \omega_e (\nu + \frac{1}{2})[J(J+1)] \quad (16)
\]
dengan

\[\omega_e = \beta \left(\frac{D \hbar \times 10^2}{2\pi^2 \, c \, m'} \right)^{1/2}, \quad \omega_{\omega_e} = \frac{h \beta^2 \times 10^2}{8\pi^2 \, m' \, c}, \]

\[B_e = \frac{h \times 10^{-2}}{8\pi^2 \, m' \, r_e^2 \, c}, \quad D_e = \frac{4B_e^3}{\omega_e^2}, \]

dan

\[\alpha_e = \frac{6(\omega_e \omega_B^3)^{1/2}}{\omega_e} - \frac{6B_e^2}{\omega_e} \]

Semua tetapan spektroskopi dan potensial Morse parameter \(\beta \) dalam cm\(^{-1}\). Dengan catatan bahwa persamaan \(D_e \) ini menyatakan konstanta distorsi sentrifugal sebagai kebalikan dari \(D \), yang menyatakan energi dissosiasi. Persamaan \(D_e = 4B_e^3 / \omega_e^2 \) dimasukkan pada semua potensial diatomik yang realistis dan dikenal sebagai \textit{hubungan Kramers}. Persamaan untuk \(\alpha_e \) dimasukkan ke potensial Morse dan sering disebut sebagai \textit{hubungan Pekeris}. Ditentukan bahwa energi vibrasional dinyatakan oleh:

\[G(v) = \omega_e (v + \frac{1}{2}) - \omega_{\omega_e} (v + \frac{1}{2})^2 \quad (17) \]

Osislator Morse mempunyai dua istilah, dan \(G(v) \) adalah simbol untuk tingkat energi vibrasional. Sebaliknya, bagian rotasional pada tingkat energi osilator Morse pada persamaan (16) hanya istilah dahulu untuk penyelesaian deret hitung.

2.1.3 Energi elektronik (Krane, 1992)

Apabila energi ditambahkan pada sebuah molekul, tidak dapat ditentukan secara tepat berapa besar energi yang terbagi untuk energi rotasi dan energi vibrasi, sebab kedua keadaan gerak ini akan terjadi semuanya. Dari hasil-hasil spektroskopi, emisi maupun absorpsi spektrum molekuler terdapat struktur
rotasional di dalam pita vibrasional. Gambar 4 menunjukkan suatu ilustrasi aras-aras rotasional di dalam aras vibrasional yang berada dalam aras elektronik tertentu, beserta contoh-contoh transisi baik di dalam satu aras energi elektronik maupun antar aras energi elektronik.

Gambar 4. Penggambaran tingkatan energi rotasi, energi vibrasi, dan energi elektronik serta kebolehjadian transisi yang terjadi.
Transisi yang ditandai dengan \times melanggar aturan seleksi sehingga tidak diperkenankan. Jarak antar tingkat energi rotasi lebih kecil daripada jarak antar tingkat energi vibrasi, jadi sederetan keadaan rotasi dibangun pada setiap keadaan vibrasi. Dalam satu tingkat energi elektronik semua transisi harus memenuhi aturan seleksi:

$$\Delta v = \pm 1 \text{ dan } \Delta J = \pm 1$$ \hspace{1cm} (18)

Energi elektronik merupakan penjumlahan dari suku rotasi (Persamaan 5) dan vibrasi (Persamaan 14), sehingga dapat ditulis menjadi:

$$E_J \nu = \frac{J(J+1)\hbar^2}{2I} + (\nu + \frac{1}{2})\hbar \nu$$ \hspace{1cm} (19)

Karena suku vibrasi jauh lebih besar daripada suku rotasi, panjang gelombang pancar dalam spektrum akan selalu berkaitan dengan $J \rightarrow J - 1$, sedang $J \rightarrow J + 1$; panjang gelombang scrap berkaitan dengan transisi dalam hal ν bertambah satu unit.

Jadi sebuah foton pancar akan memiliki energi:

$$\Delta E = E_{\nu J} - E_{\nu J - 1 J \pm 1}$$

$$= \left[\left(\nu + \frac{1}{2} \right)\hbar \nu + \frac{J(J+1)\hbar^2}{2I} \right] - \left[\left(\nu - \frac{1}{2} \right)\hbar \nu + \frac{(J \pm 1)(J \pm 1 + 1)\hbar^2}{2I} \right]$$

$$= h\nu + \frac{\hbar^2}{2I} (-J - 1) \hspace{1cm} \text{untuk } J \rightarrow J + 1$$ \hspace{1cm} (20)

$$= h\nu + \frac{\hbar^2}{2I} (J) \hspace{1cm} \text{untuk } J \rightarrow J - 1$$ \hspace{1cm} (21)
2.1.4 Energ i total molekul diatomik (Nur, 1997)

Dalam kasus sebuah molekul, energi potensial terbagi dalam tiga bagian, yakni: energi elektron (yang berhubungan dengan gerak elektron), sebagian lainnya menjadi energi vibrasi (efek getaran inti di sekitar keadaan setimbang) dan energi rotasi (rotasi dari seluruh molekul). Jadi energi potensial total dapat ditulis:

\[E = E_e + E_v + E_r \] \hspace{1cm} (22)
dengan \(E_e \) adalah energi elektronik, \(E_v \) adalah energi vibrasi, \(E_r \) adalah energi rotasi.

Energi ini yang terkuantisasi, dapat dianggap sebagai gelombang dengan frekuensi \(\nu \) yang diberikan oleh Planck menjadi:

\[E = h \nu \] \hspace{1cm} (23)
dengan \(h \) adalah konstanta Planck. Pada spektroskopi, digunakan notasi untuk bilangan gelombang \(\nu' \), dinyatakan dalam cm\(^{-1}\), sehingga dapat ditulis:

\[\nu' = \frac{\nu}{c} \] \hspace{1cm} (24)
dengan \(c \) adalah kecepatan cahaya, sehingga bilangan gelombang \(\nu' \) mempunyai hubungan:

\[E = h \nu' c \] \hspace{1cm} (25)
Akibatnya energi total dapat dituliskan dengan:

\[\frac{E}{hc} = \frac{E_e}{hc} + \frac{E_v}{hc} + \frac{E_r}{hc} \]
atau bisa juga dengan:

\[\nu' (\text{cm}^{-1}) = T e + G(\nu) + F(J) \] \hspace{1cm} (26)
dengan \(T e, G(\nu) \) dan \(F(J) \) adalah energi elektronik, energi vibrasional dan energi rotasional. \(\nu \) adalah bilangan kuantum vibrasi, \(J \) adalah bilangan kuantum rotasi.
2.2 Pengertian Dasar Plasma (Nur, 1998)

Jika energi (temperatur) suatu gas dinaikkan sehingga memungkinkan atom-atom gas terionisasi, gas akan melepaskan elektron-elektronnya yang pada keadaan normal mengelilingi inti. Pencampuran antara ion-ion yang bermuatan positif dan elektron-elektron yang bermuatan negatif yang mempunyai sifat-sifat berbeda dengan gas pada umumnya, dan materi ini disebut dengan plasma. Jadi secara sederhana plasma adalah fase keempat dari suatu material yang memiliki suhu dan energi yang sangat tinggi, antara ion-ion positif dengan elektron-elektron yang bermuatan negatif terdapat interaksi coulomb dan secara keseluruhan, berdasarkan muatan, plasma merupakan material netral.

Dalam fase plasma terdapat kesetimbangan termodinamika jika gas terionisasi total. Ionisasi dalam gas terjadi akibat tumbukan antar molekul gas netral, antar elektron dengan atom netral, antar ion dengan molekul dalam gas netral. Elektron-elektron mempunyai suatu temperatur kesetimbangan antar sesamanya yakni temperatur elektronik (T_e), yang lainnya ion-ion dan partikel-partikel netral dengan massa yang hampir sama mempunyai suatu temperatur kesetimbangan yang lain pula ($T_o=T_i$).

Berdasarkan temperaturnya plasma dapat dikelompokkan menjadi:

1. Plasma dingin, di mana ion-ion dan atom-atom (molekul-molekul) netral tetap dalam suhu sekitar 1000K, namun elektronnya mempunyai suhu sekitar 50000K.
2. Plasma termik, ion-ion dan atom-atom (molekul-molekul) bersuhu lebih tinggi dari 3000 K.
3. Plasma panas, temperaturnya diatas 10^6 K.
2.3 Plasma Molekuler Nitrogen

Plasma terbentuk karena adanya ionisasi baik sebagian maupun keseluruhan dari gas. Proses ionisasi pada gas dapat berlangsung dengan dua cara, yaitu:

1. Proses ionisasi karena penyerapan energi elektromagnetik yang menyebabkan transisi tingkat-tingkat energi atom.
2. Proses ionisasi yang terjadi karena adanya tumbukan antar partikel.

Proses ionisasi yang terjadi karena adanya penyerapan energi foton yang dipancarkan gelombang elektromagnetik oleh gas mengakibatkan partikel-partikel gas tertransfer dari keadaan normal ke keadaan tereksitas. Jika energi foton yang datang melebihi energi ionisasi partikel gas, maka elektron akan terlepas dari ikatannya dan partikel gas berubah menjadi ion. Proses ini biasa ditulis dalam persamaan sebagai berikut (Beiser, 1991):

\[h\nu = K_{\text{max}} + h

\nu_0 \]

(27)

dengan \(h \) adalah konstanta Planck, \(\nu \) dan \(\nu_0 \) adalah frekuensi ambang ionisasi dan frekuensi foton datang, \(K_{\text{max}} \) adalah energi kinetik fotoelektron maksimum.

Proses ionisasi juga dapat terjadi karena adanya tumbukan antara elektron-elektron bebas dengan partikel-partikel gas. Proses tumbukan ini selain menyebabkan terjadinya ionisasi, juga menyebabkan peristiwa-peristiwa seperti terlihat pada Tabel 2.
Tabel 2. Interaksi elektron-partikel gas

<table>
<thead>
<tr>
<th>Reaksi</th>
<th>Produk</th>
<th>Interaksi</th>
</tr>
</thead>
<tbody>
<tr>
<td>e + N₂</td>
<td>N + N</td>
<td>dissosiasi</td>
</tr>
<tr>
<td>e + N₂</td>
<td>N₂⁺ + e</td>
<td>eksitasi molekul</td>
</tr>
<tr>
<td>e + N</td>
<td>N⁺ + e</td>
<td>eksitasi atom</td>
</tr>
<tr>
<td>e + N₂</td>
<td>N₂⁺ + 2e</td>
<td>ionisasi molekul</td>
</tr>
<tr>
<td>2e + N₂⁺</td>
<td>N₂</td>
<td>rekombinasi molekul</td>
</tr>
<tr>
<td>2e + N⁺</td>
<td>N</td>
<td>rekombinasi atom</td>
</tr>
<tr>
<td>e + N₂</td>
<td>N₂ + e + hν</td>
<td>relaksasi molekul</td>
</tr>
<tr>
<td>e + N₂</td>
<td>N + e + hν</td>
<td>relaksasi atom</td>
</tr>
</tbody>
</table>

Untuk menggambarkan beberapa peristiwa yang disajikan tabel 2, pada gambar 5 ditunjukkan diagram energi potensial molekul N₂ dan N₂⁺.

2.4 Temperatur Plasma Molekuler (Konuma, 1992)

Energi kinetik rata-rata elektron-elektron, ion-ion, dan molekul-molekul tereksitasi dalam plasma adalah berbeda. Sehingga temperatur plasma harus digambarkan sesuai dengan temperatur masing-masing partikel: temperatur elektronik \(T_e \), temperatur ionik \(T_i \), dan temperatur gas panas \(T_g \). Sebagai tambahan, jika molekul-molekul gas itu mempunyai susunan internalnya sendiri, energi \(\epsilon \) dari sistem terdiri atas \(\epsilon_{\text{rot}} \), \(\epsilon_{\text{vib}} \), dan \(\epsilon_{\text{elektr}} \) adalah energi pada tingkatan rotasi, vibrasi, dan elektronik. Untuk molekul diatomik atau poliatomik, energi total merupakan gabungan dari energi rotasional, energi vibrasional dan energi elektronik. Energi-energi ini dapat dinyatakan dengan temperatur rotasional \(T_{\text{rot}} \), temperatur vibrasional \(T_{\text{vib}} \), dan temperatur elektronik \(T_{\text{elektr}} \).

Sehingga, temperatur plasma dapat ditulis dengan menggunakan beberapa temperatur yang masing-masingnya berbeda satu sama lain. Ini menunjukkan bahwa kesetimbangan termal tidak dapat diterapkan di antara partikel-partikel tak sejenis dalam plasma atau untuk tingkat energi dari partikel yang berbeda. Kesetimbangan termal dapat terjadi sesama partikel sejenis yakni antara elektron dengan elektron atau ion dengan ion. Ini disebabkan oleh jumlah tumbukan di antara elektron-elektron atau di antara ion-ion yang lebih besar daripada jumlah tumbukan antara sebuah elektron dan sebuah ion.

2.5 Temperatur Elektronik (Nur, 1996)

Penelitian ini mencoba untuk menerapkan suatu metoda penentuan temperatur elektronik dalam plasma nitrogen, oleh karenanya pada sub bab ini akan dibahas analisis temperatur elektronik dalam plasma molekuler berdasarkan
metoda spektroskopi emisi. Energi yang dibutuhkan untuk eksitasi atau ionisasi sebuah molekul M dapat diberikan pada saat bertumbukan dengan partikel-partikel lainnya dan terutama dengan elektron-elektron dari bahan (medium). Energi kinetik yang hilang ketika tumbukan dengan elektron e telah diubah menjadi energi dalam untuk molekul M.

Dengan demikian aras M_X dari energi E_X bisa tereksitasi ke aras M_C jika diberi energi $E_C - E_X = E_{CX}$ pada saat tumbukan tidak elastis. Jika v dan v' adalah kecepatan elektron bermassa m sebelum dan sesudah tumbukan:

$$M_X + e(v) \rightarrow M_C + e(v')$$

Hasil akhir energi tumbukan diberikan oleh:

$$\frac{1}{2} mv'^2 = \frac{1}{2} mv^2 + E_{XC}$$

(28)

Tumbukan ini terjadi dengan kebolehjadian tertentu $P_{XC}(v)$, dalam satuan waktu, juga tergantung dari kecepatan elektron v, tampang lintang efektif tumbukan molekul tereksitasi $\sigma_{XC}(v)$ dan populasi P_C, dalam satuan volume, dari molekul M_C pada aras C:

$$P_{XC}(v) = \nu \sigma_{XC}(v) P_X$$

(29)

Tampang lintang efektif tereksitasi $\sigma_{XC}(v)$ yang dinyatakan dalam cm2 adalah kebolehjadian integral di atas daerah benturan agar molekul pada aras C tereksitasi ke aras X.

Jika dimiliki suatu densitas elektron n_e yang terdistribusi kecepatannya dapat digantikan oleh sebuah fungsi $f(v)$, kemudian sejumlah transisi N_{XC} dalam
pengaruh kecepatan elektron-elektron tercakup antara \(v \) dan \(v + dv \) yang sama dengan:

\[
N_{XC}(v) = P_X N_e f(v) P_{XC}(v) \, dv
\] (30)

Jumlah total transisi antara aras \(X \) dan \(C \) di bawah pengaruh semua elektron medium akan memberi populasi \(P_C \) dari molekul \(M_C \) pada aras \(C \) dan tertulis dengan memakai hubungan persamaan (29) dan (30) adalah:

\[
P_C = P_X N_e \int_0^\infty f(v) v \sigma_{XC}(v) \, dv
\] (31)

Pada umumnya, dalam penerapannya tampang lintang efektif \(\sigma_{XC}(v) \) dikenal sebagai fungsi energi \(\epsilon \) dari gerakan elektron \((\epsilon = \frac{1}{2} mv^2) \) sehingga bisa ditulis:

\[
P_C = P_X N_e \int_0^\infty F(\epsilon) \, \epsilon^{1/2} \sigma_{XC}(\epsilon) \, d\epsilon
\] (32)

Pengukuran mutlak populasi \(P_C \) dari aras tereksitasi \(C \) adalah sulit dilaksanakan. Sebaliknya, pengukuran relatif populasi dari dua tingkat aras eksitasi yang berbeda \((C \) dan \(C' \)) memungkinkan penghilangan sebagian faktor-faktor yang tidak dikenal seperti faktor geometrik \((K) \) dari sistem pengukuran \((N_X(\text{terukur}) = K P_C) \), populasi \(P_X \) oleh proses tumbukan dan densitas elektronik \(N_e \). Dengan demikian, tidak adanya gangguan pada populasi dari aras \(C \) dan \(C' \) (misalnya efek pelemahan) dapat ditentukan dari perbandingan \(P_{C'}/P_C \), nilai energi rata-rata dari elektron dengan mengetahui di suatu sisi nilai-nilai dari tampang
lintang efektif σ_{XC} dan $\sigma_{XC'}$, dan fungsi distribusi energi elektron $F(\varepsilon)$. Perbandingannya dapat ditulis:

$$\frac{N_C'(\text{tenkur})}{N_C'(\text{tenkur})} = \frac{P_C'}{P_C} = \frac{\int_{0}^{\infty} F(\varepsilon)e^{1/2} \sigma_{XC'}(\varepsilon)d\varepsilon}{\int_{0}^{\infty} F(\varepsilon)e^{1/2} \sigma_{XC}(\varepsilon)d\varepsilon}$$

(33)

Jika fungsi distribusi $F(\varepsilon)$ tidak diketahui, metode ini dimungkinkan untuk digunakan berdasarkan pengukuran relatif populasi efektif pada aras eksitasi yang berbeda ($C, C', C'', ...$), demikian juga dengan tampang lintang efektif $\sigma_{XC}, \sigma_{XC'}, \sigma_{XC''}, ...$.