BAB II
DASAR TEORI

2.1 Komponen-Komponen Pasif Rangkaian Penguat


\[
\begin{align*}
\text{Resistor (Ideal)} & : \frac{R}{a} \\
\text{Kapasitor (Ideal)} & : \frac{C}{b} \\
\text{Induktan (Ideal)} & : \frac{L}{c}
\end{align*}
\]

Gambar 2.1. Lambang-lambang komponen. (a) Lambang resistor. (b) Lambang kapasitor. (c) Lambang induktor (Zemansky, 1986).

Resistor (ideal) adalah elemen rangkaian dua terminal yang tegangan antara terminal-terminalnya berbanding lurus dengan arus yang mengalir (Wedlock dan Roberge, 1969). Simbol resistor adalah \( R \) dengan satuan ohm (\( \Omega \)). Lambang gambar resistor dalam suatu rangkaian diperlihatkan pada gambar 2.1-a.

Kapasitor (ideal) adalah elemen rangkaian dua terminal dengan arus yang mengalir pada elemen tersebut sebanding dengan perubahan tegangan terhadap waktu (Wedlock dan Roberge, 1969). Simbol kapasitor adalah \( C \) dengan satuan farad (\( F \)). Kapasitor ideal adalah kapasitor yang tidak mendisipasikan energi dan dapat menyimpan energi. Lambang gambar kapasitor dalam suatu rangkaian diperlihatkan pada gambar 2.1-b. Reaktansi kapasitif suatu kapasitor, yaitu \( X_C \),
nilainya berbanding terbalik terhadap kapasitansi $C$ dan terhadap frekuensi sudut $\omega$, dituliskan

$$X_C = \frac{1}{\omega C} \tag{2.1}$$

dengan $X_C$ dalam ohm, $\omega$ dalam rad/detik, dan $C$ dalam farad (Zemansky, 1986).

Induktor (ideal) adalah elemen rangkaian dua terminal yang tegangan antara kedua terminalnya sebanding dengan perubahan arus yang mengalir terhadap waktu (Wedlock dan Roberge, 1969). Induktor disimbolkan dengan $L$ dalam satuan henry (H). Seperti kapasitor ideal, induktor ideal juga tidak mendisipasikan energi dan dapat menyimpan energi. Lambang gambar induktor dalam suatu rangkaian diperlihatkan pada gambar 2.1-c. Reaktansi induktif sebuah induktor, yaitu $X_L$, nilainya berbanding lurus dengan induktansi $L$ dan frekuensi sudut $\omega$, dituliskan

$$X_L = \omega L \tag{2.2}$$

dengan $X_L$ dalam ohm, $\omega$ dalam rad/detik, dan induktansi $L$ dalam henry (Zemansky, 1986).

Untuk kumparan satu lapis (single layer) dengan inti udara, nilai inductansinya dapat ditentukan dengan menggunakan persamaan (Wasito, 1995)

$$L = \frac{0.39r^2n^2}{9r + 10p} \tag{2.3}$$

dengan $L$ adalah induktansi kumparan dalam $\mu$H, $r$ adalah jari-jari kumparan dalam cm, $n$ adalah jumlah lilitan, dan $p$ adalah panjang kumparan dalam cm.
2.2 Perilaku Komponen Pasif pada Frekuensi Radio

Menurut Wedlock dan Roberge (1969), suatu resistor dapat mulai bersifat seperti kapasitor atau induktor pada daerah RF. Perilaku tersebut disebabkan oleh adanya kapasitansi stray atau induktansi stray. Karena kedua hal tersebut pada umumnya tidak diinginkan dan membatasi unjuk kerja komponen-komponen pada frekuensi tinggi, maka mereka dinamakan juga sebagai parasitic effects.


Gambar 2.3. Contoh kapasitansi stray dan pemodelannya. (a) Kapasitansi stray pada resistor. (b) Pemodelan Rangkaian (Wedlock dan Roberge, 1969).


2.3 Transistor Bipolar

Transistor bipolar, atau lengkapnya transistor hubungan bipolar (BJT) dibentuk dari dua buah persambungan $pn$ (dioda). Terdapat dua jenis transistor bipolar, yaitu transistor $nnp$ dan transistor $pnp$. Transistor $nnp$ dibentuk dari dua buah persambungan $pn$ dimana daerah sekutunya adalah daerah $p$, sedangkan
transistor $pnp$ dibentuk dari dua buah persambungan $pn$ dimana daerah sekutunya adalah daerah $n$. Piranti-piranti $npn$ dan $pnp$ dibuat dari bahan semikonduktor germanium dan silikon, transistor silikon kebanyakan $npn$ sedangkan germanium sebagian besar $pnp$. Semua fakta yang berlaku pada transistor $npn$ juga berlaku untuk transistor $pnp$, hanya saja polaritas-polaritas catu daya yang diberikan harus dibalik (Hodges dan Jackson, 1983).

Pada transistor $npn$, kedua daerah $n$ adalah emitter $E$ dan kolektor $C$, sedangkan daerah $p$ adalah basis $B$. Struktur dan simbol rangkaian standar untuk transistor $npn$ diberikan pada gambar 2.4.

![Gambar 2.4. Struktur dan simbol transistor npn. (a) Struktur transistor npn. (b) Simbol transistor npn (Hodges dan Jackson, 1983).](image)

Transistor $npn$ bekerja dalam modus aktif maju (gambar 2.5), yang berarti bahwa persambungan basis emitter diberi prategangan maju, yang positif pada basis, dan persambungan basis kolektor diberi prategangan balik, yang positif pada kolektor. Terdapat tiga arus terminal yang mengalir pada transistor, yaitu arus basis $I_B$, arus kolektor $I_C$, dan arus emitter $I_E$ (Hodges dan Jackson, 1983).
2.4 Penguat Daya RF


Perilaku transistor dibagi menjadi tiga daerah, yaitu daerah putus (cut-off), daerah aktif, dan daerah jenuh. Gambar 2.6 menunjukkan karakteristik dan model alat yang disederhanakan untuk transistor hubungan bipolar. Suatu BJT NPN ditempatkan dalam daerah putus dengan memberikan $V_{BE}$ kurang dari tegangan awal masuk (cut-in) $V_r$ ($\approx 0.7$ V untuk alat silikon). Dalam daerah ini pada hakekatnya BJT terangkai terbuka. Kalau $V_{BE}$ dinaikkan lebih besar dari $V_r$, transistor masuk ke daerah aktif. Hubungan basis emitor menjadi dioda tercatu maju dan hubungan kolektor emitor menjadi sumber arus yang arusnya sebanding dengan arus basis. Untuk dapat bekerja dalam daerah aktif, $V_{CE}$ harus lebih besar dari pada tegangan jenuh $V_{jenuh}$ ($V_{CE,jenuh} \approx 0.3$ V untuk BJT tunggal dengan arus kolektor rendah). Kalau beban tidak memungkinkan $V_{CE} > V_{jenuh}$, alat akan masuk ke daerah jenuh dan hubungan kolektor emitor mempunyai tegangan yang kira-kira sama dengan tegangan $V_{jenuh}$ (Krauss et al, 1990).
2.4.1 Penguat Kelas A


\[ +V_{CC} \]

\[ R_1 \]
\[ R_2 \]
\[ C_1 \]
\[ R_3 \]
\[ C_2 \]
\[ R_4 \]
\[ +V_{CC} \]

Gambar 2.7. Rangkaian penguat kelas A dengan umpan balik emitor (Purdie, 2002).

Kapasitor \( C_1 \) dan \( C_3 \) digunakan untuk menghubungkan rangkaian penguat dengan tingkatan sebelum dan sesudahnya. Kapasitor \( C_1 \) dan \( C_3 \) dikenal sebagai kapasitor penggandeng (coupling) yang digunakan untuk melewatan sinyal AC atau RF dan menahan sinyal DC, sehingga tegangan DC yang digunakan untuk pembiasan penguat tidak masuk ke tingkatan sebelum dan sesudahnya. Biasanya digunakan kapasitor dengan reaktansi \( X_C \) yang sangat rendah pada frekuensi
yang bersangkutan sehingga keberadaan kapasitor penggandeng tidak membebani penguat.

Kapasitor \( C_1 \) dan \( R_2 \) digunakan dalam hubungannya sebagai penggandeng rangkaian penguat dengan catu daya yang digunakan. Penggandengan rangkaian penguat dengan catu daya dimaksudkan agar sinyal \( AC \) atau \( RF \) pada penguat diparalelkan dengan tanah sehingga tidak dapat menjalar ke catu daya \( DC \) yang digunakan.

Resistor \( R_1 \) dan \( R_2 \) yang dihubungkan dengan basis membentuk jaringan pembagi tegangan, sehingga tegangan \( DC \) basis \( V_B \) adalah (Purdie, 2002)

\[
V_B = \frac{R_2}{R_1 + R_2} V_{cc} \quad (2.4)
\]

Arus \( DC \) yang mengalir pada resistansi jaringan bias basis \( I_B \) adalah

\[
I_B = \frac{V_{cc}}{R_1 + R_2} \quad (2.5)
\]

Tegangan \( DC \) basis lebih tinggi 0,65 V (untuk silikon) terhadap tegangan \( DC \) emitor \( V_E \), sehingga

\[
V_E = V_B - 0,65V \quad (2.6)
\]

Arus \( DC \) emitor \( I_E \) ditentukan oleh

\[
I_E = \frac{V_E}{R_{3a} + R_{3b}} \quad (2.7)
\]

Arus \( DC \) yang mengalir di kolektor \( I_C \) hampir sama dengan arus \( DC \) yang mengalir di emitor \( I_E, I_C \approx I_E \), sehingga tegangan \( DC \) kolektor \( V_C \) adalah

\[
V_C = V_{cc} - (I_C R_L) \quad (2.8)
\]
Hubungan antara $R_t$ dengan daya keluaran penguat ($P_o$) adalah (Purdie, 2002)

$$R_t = \frac{V_{pk}^2}{2 \times P_o} \tag{2.9}$$

$V_{pk}$ adalah tegangan keluaran maksimum untuk memperoleh ayunan tegangan keluaran yang linier, ditentukan dengan persamaan

$$V_{pk} = V_{cc} - V_E \tag{2.10}$$

Penguatan tegangan $AC$, yang disimbolkan dengan $A_v$ ditentukan oleh

$$A_v = \frac{R_t}{R_{3a}} \tag{2.11}$$

Penguatan arus $AC$, yang disimbolkan dengan $\beta_{ac}$ ditentukan oleh

$$\beta_{ac} = \frac{F_T}{f_0} \tag{2.12}$$

dengan $F_T$ menyatakan frekuensi cut-off transistor, dan $f_0$ menyatakan frekuensi kerja yang digunakan.

Impedansi masukan transistor, yaitu $Z_{ib}$, ditentukan dengan

$$Z_{ib} = \beta_{ac} \times R_{3a} \tag{2.13}$$

dengan $R_{3a}$ adalah resistansi $AC$ emitor.

2.4.2 Penguat Mode Campuran Kelas C

Menurut Krauss et al (1990), penguat mode campuran kelas C merupakan versi benda badat ($BJT$) dari penguat kelas C. Rancangan penguat daya benda padat mode campuran kelas C pada awalnya menggunakan konsep kelas C tabung hampa, namun berbagai masalah timbul dalam penggerak (rangkaian masuk),
catu, rangkaian keluaran, kapasitansi varaktor dari transistor, dan resistansi jenuh yang sangat rendah memaksa penerapan secara keseluruhan konsep mode campuran kelas C. Penerapan mode campuran kelas C terjadi secara kebetulan yang baru disadari setelah digunakan untuk beberapa lama.

Penguat daya mode campuran kelas C mempunyai efisiensi yang lebih besar dan rangkaian yang lebih sederhana dibandingkan dengan penguat daya kelas A. Penguat daya jenis ini digunakan untuk penguatan sinyal-sinyal CW, FM dan AM. Rangkaian penguat daya mode campuran kelas C ditunjukkan pada gambar 2.8.


Rangkaian tala keluaran atau filter merupakan bagian yang diperlukan dari penguat mode campuran kelas C, dan tidak hanya digunakan sebagai sarana pengurang harmonik pada keluaran. Dalam sebagian besar pemakaian mode campuran kelas C, suatu rangkaian tala pita sempit atau jaringan penyesuai dapat digunakan.
Pada rangkaian keluaran, choke RFC1 dimisalkan mempunyai reaktansi tinggi pada frekuensi pembawa dan hanya melewatkan arus searah \((RFC1 \geq 25Z_C)\). Demikian pula rangkaian keluaran dimisalkan mempunyai \(Q\) tinggi sehingga mencegah lewatnya semua arus kecuali yang mempunyai frekuensi pembawa. Transistor dianggap sebagai penyambung \((\text{switch})\) ideal atau sumber arus ideal, tergantung pada daerah kerjanya. Transistor dimisalkan dicabang oleh kapasitansi \(C_S\) yang menjadi satu dengan transistor dan tidak merupakan unsur tersendiri (diskrit). Setiap saat, beda antara arus transistor kapasitor \([i_s(\theta) + i_c(\theta)]\) dan arus keluaran \(i_b(\theta)\) harus sama dengan arus sumber \(I_{de}\). Karena itu, apabila transistor berada dalam daerah aktif, tegangan kolektor \(v_C(\theta)\) ditentukan oleh beda antara arus keluaran searah dan arus sumber transistor yang mengisi muatan kapasitansi cabang \(C_S\). Operasi selama transistor terputus serupa dengan \(i_s(\theta) = 0\). Kalau transistor jenuh, \(v_C(\theta) = V_{jenuh}\), sebagian besar arus dipintaskan seputar \(C_S\), dan arus kolektor sama dengan selisih antara arus sumber searah dan arus keluaran (Krauss et al, 1990).

Pada rangkaian masukan, \(L_1\) dan \(C_1\) membentuk suatu rangkaian penyesuai \((\text{matching})\), RFC2 dan \(R_{bb}\) merupakan jalur arus searah ke basis. Dimisalkan bahwa masukan penggerak mendekati sumber arus sinusoidal dan bahwa arus basis sesaat \(i_b(\theta)\) positif. Karena itu dioda basis dicatu maju dengan \(v_b(\theta) = V_r\) dan transistor berada baik dalam daerah aktif maupun dalam daerah jenuh, tergantung pada tegangan kolektor \(v_C(\theta)\). Transistor tetap berada dalam
daerah aktif atau dalam keadaan jenuh sampai arus $i_p(\theta)$ berubah polaritasnya
dan telah menghilangkan muatan yang tersimpan dalam basis. Pada saat itu, dioda
basis menjadi tercatu balik dan jumlah arus-arus dalam $L_1$ dan $RFC2$ mengalir ke
dalam $C_1$ dan kapasitansi dari basis transistor. Hal ini membangkitkan tegangan
basis yang mula-mula mengayun negatif dan kemudian kembali menjadi positif.
Transistor tetap terputus sampai tegangan ini mencapai sekitar $V_r$. Dengan
menggerak basis menuju tegangan positif $V_r$ mengakibatkan adanya arus dalam
basis, karena arus tersebut memiliki suatu komponen arus searah, maka suatu jalur
arus searah harus diberikan dalam rangkaian basis. Kalau arus searah mengalir
lewat tahanan $R_{bb}$, maka akan dihasilkan tegangan $V_{bb}$. Walaupun teknik
pencatuan ini sering digunakan dalam penguat daya mode campuran kelas C,
keuntungannya tidak jelas, karena sudut hantarannya tidak siap dikendalikan
kalau basis digerakkan oleh sumber arus bolak-balik. Kerugian menggunakan $R_{un}$
adalah bahwa daya yang didispersikan didalamnya harus dipasok oleh penggerak.
Suatu alternatif adalah cukup menghubungkan $RFC2$ ke bumi (Krauss et al,
1990).

Perencanaan penguat daya mode campuran kelas C pada umumnya
dilakukan dengan menggunakan impedansi sinyal kuat transistor. Impedansi
sinyal kuat merupakan parameter transistor yang dapat diukur dan atau
diperkirakan. Impedansi sinyal kuat yang terukur hanya berlaku pada tingkat
frekuensi dan tingkat daya dimana mereka diukur. Karena harga-harga tersebut
merupakan hasil dari beberapa pengubah tidak linier dalam rangkaian, maka
harga-harga tersebut diperkirakan akan sangat berubah menurut frekuensi, penggerak, daya keluaran, dan tegangan sumber. Meskipun demikian, impedansi sinyal kuat dapat dianggap sebagai suatu pendekatan yang bermanfaat dalam melakukan perencanaan tahap pertama (Krauss et al, 1990).

Impedansi keluaran sinyal kuat $Z_C$ dari transistor daya $HF$ dan $VHF$ bipolar umumnya diperkirakan dengan menganggap sebagai hasil kombinasi paralel antara kapasitansi keluaran kolektor $C_{ol}$ dan resistansi beban kolektor $R_L$. Resistansi beban kolektor ditentukan dengan persamaan (Hejhall, 1993)

$$R_L = \frac{V_{CC}^2}{2P_{out}}$$

(2.14)
dengan $V_{CC}$ adalah tegangan catu yang diberikan, dan $P_{out}$ adalah daya keluaran yang diinginkan.


2.5 Rangkaian-rangkaian Resonansi

Impedansi dan admitansi dari suatu rangkaian $RLC$ merupakan fungsi yang rumit dari frekuensi, dan secara normal mempunyai komponen resistif (nyata) dan juga komponen reaktif (imajiner). Untuk beberapa rangkaian, bagian reaktif lenyap pada suatu harga frekuensi, dan kondisi ini (impedansi dan admitansi nyata murni) dinamakan resonansi. Frekuensi dimana terjadi resonansi
dari suatu rangkaian RLC dinamakan frekuensi resonansi. Suatu rangkaian dengan satu frekuensi resonansi atau lebih dinamakan rangkaian resonansi (Krauss et al, 1990).

Rangkaian resonansi banyak digunakan dalam sistem komunikasi untuk memisahkan sinyal yang diinginkan dari sinyal yang tidak diinginkan. Rangkaian resonansi memiliki sifat-sifat pemindahan impedansi yang penting, dan dapat dirancang sedemikian rupa sehingga pada frekuensi resonansinya sebuah sumber impedansi melihat suatu impedansi yang bersesuaian dan memindahkan daya ke beban resistansi rendah dalam rangkaian resonansi.

Dalam rangkaian sebenarnya, resonansi yang benar hanya terjadi pada frekuensi diskrit dan terisolasi, sehingga untuk frekuensi di atas dan di bawah frekuensi resonansi, impedansi rangkaian menunjukkan reaktansi maupun resistansi. Daerah frekuensi dimana rangkaian mendekati keadaan resonansi merupakan lebar pita yang bermanfaat dari rangkaian. Karena impedansi dari kebanyakan rangkaian resonansi melewati maksimum dan minimum dengan tajam pada resonansinya, maka lebar pita atau selektivitas frekuensi dari rangkaian tersebut dinyatakan dalam lebar puncak atau lembah. Lebar pita sering dikaitkan dengan suatu besaran yang dinamakan faktor kualitas, atau yang sering dituliskan dengan faktor $Q$ (Krauss et al, 1990).

Faktor $Q$ merupakan parameter yang umum digunakan untuk menyatakan selektivitas relatif suatu rangkaian. Pada awalnya, faktor $Q$ didefinisikan sebagai perbandingan reaktansi ke resistansi dari induktor. Namun pada perkembangan
selanjutnya, faktor $Q$ dari setiap rangkaian akan ditentukan untuk membentuk penggunaan umum, dan belum tentu sesuai dengan definisi awal dari faktor $Q$.

2.5.1 Resonansi Seri

Suatu rangkaian RLC seri yang digerakkan oleh sumber tegangan $V$ diperlihatkan pada gambar 2.9. Resistansi $R$ menggabungkan tahanan beban dan setiap resistansi seri yang ada dalam induktor dan sumber. Impedansi masuk dari rangkaian tersebut adalah (Krauss et al, 1990)

$$Z(j\omega) = R + j\left(\omega L - \frac{1}{\omega C}\right)$$  \hspace{1cm} (2.15)


Resonansi akan terjadi kalau $\omega L - \frac{1}{\omega C} = 0$, yaitu pada frekuensi resonansi

$$\omega_0 = 2\pi f_0 = \frac{1}{\sqrt{LC}} \text{ rad/s}$$  \hspace{1cm} (2.16)

Apabila frekuensi sumber diubah, sedangkan tegangan $V$ dijaga tetap, maka arus mencapai harga terbesarnya pada resonansi, atau

$$I_{\text{maks}} = \frac{V_{\text{maks}}}{R}$$  \hspace{1cm} (2.17)
Nilai $Q$ dari rangkaian resonansi seri merupakan perbandingan antara reaktansi induktor dengan resistansi total rangkaian yang besarnya adalah (Krauss et al, 1990)

$$Q = \frac{\omega_0 L}{R} \quad (2.18)$$

dan

$$Q = \frac{f_0}{f_2 - f_1} = \frac{f_0}{B} \quad (2.19)$$

dengan $f_1$ dan $f_2$ menyatakan frekuensi setengah daya dari rangkaian resonansi.

2.5.2 Resonansi Paralel

Suatu rangkaian dengan $L$, $C$, dan $R_i = \frac{1}{G_i}$ yang dihubungkan secara paralel diperlihatkan pada gambar 2.10. Subskrip $t$ menyatakan resistansi terminal pada saat resonansi. Resonansi paralel terjadi kalau tegangan masuk dan arus masuk sefasa. Faktor $Q$ dari rangkaian paralel, yang disimbolkan dengan $Q_i$, merupakan perbandingan antara resistansi terminal dengan reaktansi induktor, dan lebar pita $B$ diberikan oleh (Krauss et al, 1990)

$$Q_i = \frac{\omega_0 C}{G_i} = R_i \omega_0 C \quad (2.20)$$

$$B = \frac{f_0}{Q_i} \quad (2.21)$$

Admitansi masuk rangkaian, yang disimbolkan dengan $Y(j\omega)$, diberikan oleh

$$Y(j\omega) = G_i + j\left(\omega C - \frac{1}{\omega L}\right) \quad (2.22)$$
Persamaan untuk admitansi masuk mempunyai bentuk yang sama dengan persamaan impedansi masuk rangkaian resonansi seri, kecuali bahwa parameter impedansinya diganti dengan parameter admitansi. Resonansi akan terjadi pada saat (Krauss et al, 1990)

\[ 2\pi f_0 = \omega_0 = \frac{1}{\sqrt{LC}} \text{ rad/s} \]  

\[ (2.23) \]


2.6 Induktor Tersadap Sebagai Rangkaian Transformasi Impedansi

Rangkaian induktor tersadap, yang ditunjukkan pada gambar 2.11, sering digunakan dalam rangkaian-rangkaian penguat. Digunakan satu induktor, dengan kedudukan sadapan (titik b) yang dipilih untuk mengubah \( R_s \) menjadi \( R_g \). Kalau induktor dilititkan pada inti ferit sehingga koefisien koping \( k \) mendekati satu, maka kumparan akan berlaku sebagai transformator ideal. Dengan kumparan yang berintikan udara, koefisien koping \( k \) amat kecil \( (k \approx 0.1) \), sehingga pendekatan transformator ideal tidak berlaku (Krauss et al, 1990).

Dimisalkan \( L_a \) dan \( L_b \) adalah induktansi dari dua bagian kumparan, sedangkan \( M \) adalah induktansi timbal balik dan \( k \) merupakan koefisien koping. Induktansi total diberikan oleh (Krauss et al, 1990)

\[ L = L_a + L_b + 2M \]  

\[ (2.24) \]

Menurut Krauss et al (1990), analisis mesh dari transformator gambar 2.11, dengan kapasitor dihilangkan, menghasilkan persamaan untuk admitansi masuk dalam bentuk

\[ Y_i = G_i + jB_i = \frac{R_2 + j\omega L_b}{-\omega^2 [LL_b - (L_b + M)^2] + j\omega R_2} \]  \hspace{1cm} (2.25)

Dengan memisahkan bagian nyata dan bagian imajiner, dan dengan menyamakan \( R_c = R_s = 1/G_i \), setelah manipulasi akan dihasilkan

\[ R_c = R_2 \left[ \left( \frac{L}{L_b + M} \right)^2 + \left( \frac{\omega L}{R_2} \right)^2 \left( \frac{L_b}{L_b + M} - \frac{L_b + M}{L} \right)^2 \right] \]  \hspace{1cm} (2.26)

dan

\[ B_c = \frac{1}{\omega L} \left\{ \frac{\omega^2 L_b [L_b - (L_b + M)^2/L] + R_2^2}{\omega^2 [L_b - (L_b + M)^2/L] + R_2^2} \right\} \]  \hspace{1cm} (2.27)

Kedua persamaan tersebut di atas masih belum bermanfaat karena bagaimana berubahnya \( L_b \) dengan perubahan sadapan sepanjang kumparan belum
diketahui untuk \( k < 1 \). Kalau harga \( L_a \) dan \( L_b \) dihubungkan oleh faktor \( a \), sedemikian rupa sehingga

\[
L_a = aL_b
\]  

(2.28)

Parameter-parameter \( L \) dan \( L_a + M \) dapat dinyatakan dalam \( L_a, k, \) dan \( a \) dalam bentuk

\[
L_a = \frac{L}{1 + a + 2k} \sqrt{a}
\]  

(2.29)

dan

\[
\frac{L_a + M}{L} = \frac{1 + k}{1 + a + 2k} \sqrt{a} = \frac{V_{zo}}{V_1} = \frac{1}{N}
\]  

(2.30)

dengan \( N \) dapat diidentifikasikan sebagai perbandingan gulungan dari transformator ideal atau perbandingan tegangan rangkaian terbuka.

Diperkenalkan variabel baru \( K \) (Krauss et al, 1990)

\[
K = \frac{1}{1 + k} - \frac{1}{N}
\]  

(2.31)

Persamaan akhir yang diperoleh adalah

\[
R_t = R_2 \left[ N^2 + \left( \frac{\omega L}{R_2} \right)^2 K^2 \right]
\]  

(2.32)

dan

\[
B_t = \frac{-1}{\omega L} \left( \frac{(\omega L/R_2)^2}{(\omega L/R_2)^2} \frac{K}{(1 + K)^2} + 1 \right)
\]  

(2.33)

Untuk \( k < 1 \), persamaannya menjadi

\[
\frac{R_t}{R_2} = N^2 \times D
\]  

(2.34)
$$B_i = \frac{-1}{\omega L} \times E$$ \hspace{1cm} (2.35)

dengan faktor $D$ dan $E$ menyatakan perbedaan dari keadaan idealnya.

Gambar 2.12. Perubahan $R_1/R_2$ terhadap kedudukan sadapan $V_N$

untuk $k = 0,1$ (Krauss et al, 1990).

Perubahan $R_1/R_2$ terhadap kedudukan sadapan $V_N$ untuk $k = 0,1$

diperlihatkan pada gambar 2.12. $V_N$ menggambarkan bagian dari gulungan total

yang termasuk diantara sadapan dan tanah. Gambar 2.13 dan gambar 2.14

memperlihatkan pengaruh kedudukan sadapan pada faktor-faktor $D$ dan $E$ untuk

$k = 0,1$. Dengan pertolongan lengkung-lengkap ini, perbandingan transformasi

yang benar dan kepekaan tala (kapasitif) dapat ditentukan untuk kedudukan

sadapan yang diketahui (Krauss et al, 1990).
Gambar 2.13. Gambaran faktor $D$ terhadap kedudukan sadapan $\left( \frac{1}{N} \right)^{1/2}$
untuk $k = 0,1$ (Krauss et al, 1990).

Gambar 2.14. Gambaran faktor $E$ terhadap kedudukan sadapan $\left( \frac{1}{N} \right)^{1/2}$
untuk $k = 0,1$ (Krauss et al, 1990).
2.7 Jaringan Penyesuai Impedansi (Impedance Matching Network)

Penguat daya mode campuran kelas C pada umumnya menggunakan daerah frekuensi yang relatif sempit dan memerlukan impedansi penggerak serta impedansi kolektor yang menyertakan baik resistansi maupun reaktansinya. Oleh karena alat-alat digerakkan cukup kuat menuju daerah jenuh selama hampir setiap setengah siklus RF, maka daya keluaran merupakan fungsi dari tegangan sumber kolektor dan impedansi beban kolektor. Karena itu sangat penting untuk memberikan impedansi beban kolektor dalam perencanaan penguat daya mode campuran kelas C (Krauss et al, 1990).

Tujuan yang paling jelas dari jaringan penyesuai impedansi adalah untuk mengubah impedansi beban atau penggerak menjadi impedansi beban kolektor \(Z_c\) atau impedansi penggerak basis \(Z_b\) yang diperlukan untuk menghasilkan daya keluaran yang diperlukan pada tegangan catu dan frekuensi yang ditentukan. Jaringan penyesuai pada keluaran juga sering digunakan untuk mengurangi harmonik-harmonik dalam keluaran sampai ke tingkat yang dapat diterima (walaupun hal ini dapat dilakukan dengan filter-filter yang tidak membentuk pengubah impendansi). Diperlukan agar jaringan penyesuai menghasilkan impedansi yang diperlukan pada kolektor atau basis sampai harmonik dari frekuensi pembawa (Krauss et al, 1990).

Ada beberapa cara yang dapat dilakukan untuk melaksanakan penyesuaian impedansi yang diperlukan, yaitu dengan menggunakan elemen diskrit, saluran transmisi, atau gabungan dari keduanya. Elemen-elemen rangkaian diskrit pada
umumnya digunakan dalam daerah HF dan daerah VHF, sedangkan saluran transmisi sering digunakan pada frekuensi UHF dan gelombang mikro.

Suatu bentuk jaringan penyesuai elemen diskrit yang sering digunakan diperlihatkan pada gambar 2.15. Jaringan penyesuai terdiri dari tiga buah rektansi, yaitu sebuah induktor dan dua buah kapasitor. Jaringan penyesuai digunakan untuk membawa $R_2$ ke $R_1$ atau $R_1$ ke $R_2$.

![Diagram](image)

Gambar 2.15. Jaringan penyesuai impedansi tiga reaktansi (Becciolini, 1993).

Menurut Becciolini (1993), untuk jaringan tiga buah reaktansi, $R_2 > R_1$ dan nilai $Q$ dari rangkaian ditentukan terlebih dahulu. Penentuan nilai-nilai komponen yang digunakan adalah sebagai berikut:

\[
X_{L_1} = Q R_1 \quad (2.36)
\]

\[
X_{C_2} = A R_2 \quad (2.37)
\]

\[
X_{C_1} = \frac{B}{Q - A} \quad (2.38)
\]

dengan

\[
A = \sqrt{\frac{R_1(1+Q^2)}{R_2}} - 1 \quad (2.39)
\]

\[
B = R_1(1+Q^2) \quad (2.40)
\]
2.8 *Power Supply* (Pencatu Daya)

*Power supply* merupakan bagian yang sangat penting dari setiap peralatan elektronik, karena ia merupakan penyedia tegangan dan arus yang dibutuhkan oleh rangkaian. Karakteristik umum dari *power supply* adalah tegangan keluaran, arus keluaran, tegangan puncak yang diperbolehkan, tegangan riak (*ripple*), serta regulasi tegangan (Slurzberg dan Osterheld, 1948).

*Power supply* yang digunakan dalam peralatan radio adalah dengan mengubah arus *AC* menjadi arus *DC*. Proses ini terdiri dari empat bagian, yaitu transformator daya, penyearahan, filter, dan pembagi tegangan.

Transformator daya digunakan untuk menaikkan atau menurunkan tegangan jala-jala *AC* ke suatu nilai yang dibutuhkan. Parameter transformator daya yang penting adalah tegangan keluaran (pada lilitan sekunder), dan arus keluaran pada beban pemuh.

Penyearah dilakukan untuk mengubah arus *AC* menjadi arus *DC*. Penyearah secara elektronik dilakukan dengan menggunakan dioda. Pada dasarnya terdapat dua jenis penyearah, yaitu penyearah setengah gelombang dan penyearah gelombang penuh.

Filter digunakan untuk menghilangkan riak tegangan yang muncul dari proses penyearah sehingga diharapkan tegangan yang keluar adalah tegangan *DC* yang tetap. Rangkaian filter berhubungan dengan komponen yang dapat menyimpan energi, sehingga rangkaian filter dapat dibuat dengan menggunakan kapasitor atau induktor. Kapasitor lebih banyak digunakan pada rangkaian filter dari pada induktor, karena dengan ukuran fisik yang kecil kapasitor dapat
mempunyai nilai kapasitansi yang besar dan digunakan pada tegangan yang tinggi.

Pembagi tegangan digunakan untuk membagi tegangan keluaran dari filter ke nilai tegangan yang dibutuhkan. Pembagi tegangan dapat dilakukan dengan menggunakan resistor, yang juga difungsikan untuk meningkatkan regulasi tegangan keluaran (Slurzberg dan Osterheld, 1948).

2.9 Analisis Gelombang RF


Suatu gelombang kompleks periodik dapat digambarkan dengan dua cara, yaitu dalam ranah waktu, atau dalam ranah frekuensi. Penggambaran gelombang kompleks periodik dalam ranah waktu ditunjukkan pada gambar 2.16-b, sedangkan gelombang kompleks dalam ranah frekuensi ditunjukkan pada gambar 2.16-c. Komposisi frekuensi gelombang dan distribusi daya dari setiap frekuensi, paling baik digambarkan dalam ranah frekuensi (Hund, 1989).

Perilaku gelombang RF dalam rangkaian linier berbeda terhadap perilaku gelombang RF dalam rangkaian tidak linier. Pada rangkaian linier, frekuensi keluaran adalah sama dengan frekuensi masukan. Sedangkan pada rangkaian tidak linier, akan dihasilkan frekuensi-frekuensi yang tidak tampak pada masukan.
Gambar 2.16. Gelombang kompleks dan penggambarannya. (a) Gelombang kompleks. (b) Penggambaran gelombang kompleks dalam ranah waktu. (c) Penggambaran gelombang kompleks dalam ranah frekuensi (Hund, 1989).

Apabila penguatan (gain) dari suatu penguat linier adalah dua, maka tegangan keluaran akan selalu dua kali sinyal masukan dengan tidak memandang seberapa besar atau kecil sinyal masukan. Gambar 2.17 menunjukkan gelombang masukan dan keluaran pada rangkaian linier serta penggambarannya dalam ranah frekuensi.

Persamaan umum untuk penguat linier adalah (Hund, 1989)

\[ v_{out} = a_0 + a_1 v_{in} \]  \hspace{1cm} (2.41)

dengan \( v_{out} \) adalah tegangan keluaran, \( a_0 \) adalah komponen DC, \( a_1 \) adalah perolehan penguat, dan \( v_{in} \) adalah tegangan masukan.
Gambar 2.17. Masukan dan keluaran pada penguat linier. (a) Kurva masukan/keluaran. (b) Gelombang masukan dalam ranah frekuensi. (c) Gelombang keluaran dalam ranah frekuensi (Hund, 1989).

Gelombang kompleks masukan pada penguat linier dapat berupa penjumlahan dari deret sinus atau kosinus, namun perolehan untuk setiap komponen adalah sama, sehingga kelurarannya merupakan penjumlahan dari setiap komponen dengan perolehan yang sama.

Pada rangkaian tidak linier, hubungan antara gelombang masukan dengan gelombang keluaran adalah tidak linier. Jika gelombang sinus dikuatkan oleh rangkaian tidak linier, gelombang keluaran akan terdistorsi seperti yang diperlihatkan pada gambar 2.18-a.

Gambar 2.18. Masukan dan keluaran pada penguat tidak linier. (a) Kurva masukan/keluaran. (b) Gelombang masukan dalam ranah frekuensi. (c) Gelombang keluaran dalam ranah frekuensi (Hund, 1989).
Rangkaian akan menghasilkan frekuensi-frekuensi baru yang merupakan perkalian dari frekuensi masukan. Penjumlahan frekuensi-frekuensi baru yang dihasilkan oleh rangkaian tidak linier dengan gelombang sinus awal akan menghasilkan gelombang keluaran yang terdistorsi. Oleh karena itu, gelombang keluaran merupakan hasil penjumlahan dari frekuensi dasar (fundamental) gelombang masukan dengan frekuensi-frekuensi harmonik yang dihasilkan oleh rangkaian. Ranah frekuensi gelombang masukan ditunjukkan pada gambar 2.18-b, dan ranah frekuensi gelombang keluaran ditunjukkan pada gambar 2.18-c. Banyaknya frekuensi harmonik atas yang dihasilkan oleh rangkaian tidak linier tergantung pada tingkat ketidaklinierannya.

Persamaan umum untuk rangkaian tidak linier adalah (Hund, 1989)

\[ v_{out} = a_0 + a_1 v_m + a_2 v_m^2 + a_3 v_m^3 + ... + a_n v_m^n \]  \hspace{1cm} (2.42)

dengan \( v_{out} \) adalah tegangan keluaran rangkaian; \( a_0 \) adalah komponen DC; \( a_1, a_2, a_3, \ldots, a_n \) adalah tetapan-tetapan; dan \( v_m \) adalah tegangan masukan rangkaian.

Dimisalkan gelombang masukan rangkaian tidak linier adalah gelombang sinus frekuensi tunggal, dan dituliskan (Hund, 1989)

\[ v(t) = V_{max} \sin(2\pi f t) \]  \hspace{1cm} (2.43)

Apabila gelombang keluaran \( v_{out} \) hanya terdiri dari tiga komponen, maka

\[ v_{out} = a_0 + a_1 v_m + a_2 v_m^2 \]  \hspace{1cm} (2.44)

\[ v_{out} = a_0 + a_1 V_{max} \sin(2\pi f t) + a_2 \left[ V_{max} \sin(2\pi f t) \right]^2 \]  \hspace{1cm} (2.45)
\[ v_{out} = a_0 + a_1 V_{max} \sin(2\pi ft) + a_2 V_{max}^2 \frac{1}{2} \left[ 1 - \cos(2\pi ft) \right] \]  
(2.46) 

\[ v_{out} = a_0 + \frac{a_1 V_{max}}{2} + a_1 V_{max} \sin(2\pi ft) - \frac{a_2 V_{max}^2}{2} \cos(2\pi ft) \]  
(2.47) 

Gelombang keluaran terdiri dari komponen DC, komponen frekuensi dasar, dan komponen harmonik kedua (2f). Dihasilkan frekuensi baru yang tidak tampak pada masukan, yaitu frekuensi 2f. Penjumlahan dari komponen-komponen tidak linier akan menghasilkan frekuensi-frekuensi harmonik yang lebih tinggi. Oleh karena itu, frekuensi-frekuensi yang dihasilkan oleh rangkaian tidak linier tergantung pada banyaknya komponen tidak linier dan banyaknya frekuensi masukan pada rangkaian.


2.10 Pengukuran dengan Spectrum Analyzer

2.10.1 Identifikasi Komponen Frekuensi dan Penentuan Daya

Menurut Hund (1989), penentuan komponen frekuensi dan daya dapat dilakukan dengan mudah menggunakan analyzer. Spectrum analyzer dioperasikan pada mode pita lebar (wideband), seperti yang ditunjukkan pada gambar 2.19.
Frekuensi dibaca pada skala *horizontal*, sedangkan daya dibaca pada skala *vertical*. Pembacaan dapat dilakukan dengan menggunakan *marker reference* yang dapat digerakkan sepanjang sumbu *horizontal*. Frekuensi dan daya yang ditunjuk oleh marker dapat langsung dibaca pada *digital display* yang tersedia (Hund, 1989). Satuan daya yang digunakan pada *spectrum analyzer* adalah dalam dBm, apabila dikonversikan ke mW adalah

\[ P(\text{mW}) = \text{antilog} \left( \frac{P(\text{dBm})}{10} \right) \quad (2.48) \]


### 2.10.2 Pengukuran Distorsi Harmonik Gelombang

Menurut Hund (1989), distorsi harmonik digunakan untuk menyatakan perbandingan daya frekuensi harmonik terhadap daya frekuensi dasar. Dimisalkan hanya terdapat satu frekuensi harmonik, yaitu harmonik kedua. Perbedaan daya frekuensi harmonik kedua terhadap daya frekuensi dasar diberikan oleh

\[ P = \text{dBm}_2 - \text{dBm}_1 \quad (2.49) \]

dengan \( P \) menyatakan besar perbedaan daya dalam dB, \( \text{dBm}_2 \) adalah daya frekuensi harmonik kedua, dan \( \text{dBm}_1 \) adalah daya frekuensi dasar.
Perbandingan daya frekuensi harmonik kedua terhadap daya frekuensi
dasar, $\frac{P_2}{P_1}$, dihitung dengan menggunakan persamaan

$$P = 10 \log \frac{P_2}{P_1}$$

(2.50)

Persentase distorsi harmonik kedua adalah

$$\%DH_2 = \frac{P_2}{P_1} \times 100$$

(2.51)

2.10.3 Pengukuran Perbandingan Sinyal terhadap Derau

Menurut Hund (1989), Spectrum Analyzer dapat digunakan untuk
mengukur sinyal yang tingkatnya sangat rendah, sehingga analyzer dapat
digunakan untuk mengukur tingkat derau, dan tingkat sinyal terhadap derau dari
suatu rangkaian. Derau dan sinyal pada spectrum analyzer diperlihatkan pada
gambar 2.20.

![Gambar 2.20. Frekuensi tunggal dengan background derau (Hund, 1989).](image)

Daya sinyal adalah sebesar $-10$ dBm, sedangkan daya derau adalah
$-20$ dBm. Nilai perbandingan sinyal terhadap derau ditentukan oleh

$$\frac{s}{n} = \frac{P_{\text{sinyal}}}{P_{\text{noise}}}$$

(2.52)
dengan $P_{sinyal}$ adalah daya sinyal dalam watt, dan $P_{noise}$ adalah daya deru dalam watt.