BAB III
PERANCANGAN DAN REALISASI

3.1 Alat dan bahan

Berikut ini alat dan bahan yang digunakan dalam perancangan alat ukur kecepatan dan percepatan benda bergerak lurus beraturan menggunakan mikrokontroller AT89C51 seperti pada tabel 3.1.

<table>
<thead>
<tr>
<th>No.</th>
<th>Nama alat dan bahan</th>
<th>Fungsi</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>LED merah</td>
<td>Penghasil cahaya untuk LDR</td>
</tr>
<tr>
<td>b.</td>
<td>LDR</td>
<td>Sensor cahaya</td>
</tr>
<tr>
<td>c.</td>
<td>IC Op-Amp CA3140</td>
<td>Rangkaian komparator</td>
</tr>
<tr>
<td>d.</td>
<td>Mikrokontroller AT89C51</td>
<td>Pemrosesan data</td>
</tr>
<tr>
<td>e.</td>
<td>LCD</td>
<td>Menampilkan hasil dan perhitungan.</td>
</tr>
<tr>
<td>f.</td>
<td>Catu daya</td>
<td>Pemberi tegangan rangkaian keseluruhan</td>
</tr>
<tr>
<td>g.</td>
<td>Saklar tekan</td>
<td>Tombol reset</td>
</tr>
<tr>
<td>h.</td>
<td>Multimeter digital</td>
<td>Alat pengukur tegangan, arus dan hanbatan</td>
</tr>
<tr>
<td>i.</td>
<td>Mobil-mobilan</td>
<td>Benda bergerak yang diukur dalam percobaan</td>
</tr>
<tr>
<td>j.</td>
<td>IC buffer LS245</td>
<td>Buffer transmit data digital</td>
</tr>
<tr>
<td>k.</td>
<td>LED hijau</td>
<td>Indikator benda telah melewati tiap sensor.</td>
</tr>
</tbody>
</table>
3.2 Diagram blok

Alat yang dibuat secara keseluruhan dapat digambarkan dengan bagan seperti ditunjukkan pada gambar 3.1.

![Diagram blok rangkaian pengukur kecepatan dan percepatan dengan menggunakan mikrokontroller AT89C51.]

LED akan memberikan cahaya ke LDR sehingga saat benda bergerak depan sensor, benda akan menutup cahaya LED dan terjadi perubahan hambatan LDR yang kemudian akan diubah menjadi tegangan logika oleh komparator, untuk kemudian diproses di rangkaian mikrokomputer AT89C51. Jumlah LDR dan LED ada 6 buah yang penempatannya dijelaskan pada sub bab 3.4. Gambar rangkaian alat dan daftar koponen dapat dilihat pada lampiran C.

3.3 Prinsip kerja

Prinsip kerja alat ukur kecepatan dan percepatan benda bergerak lurus berubah beraturan menggunakan mikrokontroller AT89C51 adalah, saat benda bergerak melewati sensor pertama mengakibatkan sensor mengalami keadaan gelap yang membuat nilai hambatan LDR semakin tinggi. Hal ini membuat tegangan LDR semakin tinggi dan melebihi tegangan referensi komparator. Komparator akan menghasilkan tegangan rendah 0 volt yang akan memicu kerja...
timer yang dikontrol di mikrokontroller. Pada saat benda bergerak melewati sensor kedua mikrokontroller akan mencatat jangkah waktu dari sensor pertama sampai sensor kedua. Mikrokontroller juga mencatat jangkah waktu dari sensor kedua sampai sensor ketiga pada saat benda melewati sensor ketiga. Kemudian mikrokontroller akan memproses data yang didapat dan menampilkanannya di LCD (Liquid Crystal Display).

3.4 Rangkaian sensor

Penempatan sensor terlihat pada gambar 3.2

<table>
<thead>
<tr>
<th>Sensor 1</th>
<th>Sensor 2</th>
<th>Sensor 3</th>
<th>Sensor 4</th>
<th>Sensor 5</th>
<th>Sensor 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00 m</td>
<td>0.50 m</td>
<td>0.75 m</td>
<td>1.00 m</td>
<td>1.50 m</td>
<td>2.00 m</td>
</tr>
</tbody>
</table>

Lintasan benda bergerak

Gambar 3.2 Lintasan benda bergerak dan sensor

Pada bagian ini benda bergerak dideteksi oleh sensor cahaya yang berupa LDR dan LED. Untuk satu perhitungan, benda bergerak dideteksi oleh tiga sensor yang diposisikan sebagai berikut:

Tabel 3.2 Posisi sensor aktif tiap perhitungan

<table>
<thead>
<tr>
<th>Mode</th>
<th>Sensor yang aktif</th>
<th>Jarak tiap sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sensor 1, Sensor 2, Sensor 4</td>
<td>50 cm</td>
</tr>
<tr>
<td>2</td>
<td>Sensor 1, Sensor 3, Sensor 5</td>
<td>75 cm</td>
</tr>
<tr>
<td>3</td>
<td>Sensor 1, Sensor 4, Sensor 6</td>
<td>100 cm</td>
</tr>
</tbody>
</table>
Jika benda bergerak melewati sensor ini maka cahaya yang dikeluarkan LED akan tertutup oleh benda bergerak tersebut, sehingga sensor LDR akan mengalami perubahan cahaya dari terang menjadi gelap. Perubahan cahaya ini akan mengakibatkan nilai hambatan LDR menjadi lebih tinggi dan nilai tegangan v_{in} komparator akan naik.

3.5 Komparator

Komparator yang dipakai dalam rangkaian adalah komparator inverting. Pada saat LDR terkena cahaya, hambatan LDR pada posisi rendah, nilai v_{in} komparator rendah juga. Sedangkan v_{out} komparator tinggi, posisi logika 1. Saat benda melewati sensor, maka cahaya akan tertutup benda dan mengakibatkan nilai hambatan LDR akan naik, demikian pula dengan nilai v_{in} komparator. Karena v_{ref} diatur pada pertengahan perubahan tegangan v_{in}, perubahan ini mengakibatkan v_{out} komparator sekitar 0 volt atau keadaan logika 0.

3.6 Mikrokontroller AT89C51

Pada saat benda bergerak melewati sensor yang pertama, maka komparator akan menghasilkan nilai logika nol, yang memicu timer pada mikrokontroller untuk mulai bekerja. Pada saat benda melewati sensor kedua, t benda bergerak dari sensor pertama sampai sensor kedua dicatat di memori. Demikian pula dengan t pada saat benda sampai ke sensor yang ketiga. Data yang diperoleh diproses dalam mikrokontroller dan hasilnya ditampilkan di LCD. Diagram alir proses pada mikrokontroller sebagai berikut:
Gambar 3.3 Diagram blok program
3.7 LCD (Liquid Crystal Display)

Mikrokontroller mengatur LCD lewat port P2.0 dan P2.1 ke E dan RS pada port LCD, dan mengirim data lewat port DB0 – DB7. Fungsi LCD hanya untuk menampilkan hasil perhitungan data yang diperoleh serta kode ASCII untuk keterangan. Hasil yang tampil di layar LCD adalah:

1. \(t_1 \) waktu tempuh dari sensor 1 s/d 2
2. \(v_1 \) kecepatan rata-rata antara sensor 1 s/d 2
3. \(t_2 \) waktu tempuh dari sensor 2 s/d 3
4. \(v_2 \) kecepatan rata-rata antara sensor 2 s/d 3
5. \(a \) percepatan rata-rata benda bergerak

Tampilan yang diatur berurutan dari posisi sensor pertama sampai posisi sensor ketiga.

3.8 LED indikator

LED indikator sebagai kontrol untuk mengetahui apakah sensor telah terlewati benda bergerak. Jika sensor tertutup benda bergerak, maka akan ada perubahan logika dari 1 menjadi 0. Oleh mikrokontroller perubahan ini dialihkan ke port untuk input rangkaian buffer, sehingga akan membuat LED pada output buffer menyala jika ada perubahan input. Port yang digunakan adalah SFR P3.1, P3.3 – P3.7 karena masih kosong.