BAB II
DASAR TEORI

2.1 Geolistrik

Geolistrik merupakan salah satu metode geofisika yang mempelajari sifat aliran listrik di bawah permukaan dan cara mendeteksinya di permukaan. Metode ini meliputi pengukuran beda potensial dan arus listrik yang terjadi akibat injeksi arus listrik ke dalam bumi melalui sepasang elektroda arus. Perbedaan potensial diukur melalui sepasang elektroda potensial.

2.2 Distribusi Potensial dalam Media Homogen

Hukum Ohm yang menyatakan bahwa suatu medium yang homogen isotropis terdapat hubungan antara rapat arus dan intensitas medan listrik (Telford et al, 1990), yang dituliskan dengan persamaan:

\[\mathbf{J} = \sigma \mathbf{E} \]

(2.1)

dengan \(\mathbf{J} \) menyatakan rapat arus (A/m²), \(\sigma \) adalah menyatakan medium, dan \(\mathbf{E} \) menyatakan intensitas medan listrik (V/m).

Karena medan listrik merupakan gradien potensial skalar maka

\[\mathbf{E} = E_x \hat{i} + E_y \hat{j} + E_z \hat{k} \]
\[= - \nabla V \]

(2.2)

Substitusi persamaan (2.1) ke dalam persamaan (2.2) diperoleh

\[\mathbf{J} = - \sigma \nabla V \]

(2.3)
Dengan V merupakan fungsi potensial skalar. Berdasarkan hukum kekekalannya muatan, bahwa tidak ada arus yang keluar ataupun arus yang masuk sehingga muatannya tetap dan mengingat σ konstan, maka berlaku persamaan Laplacian.

$$\nabla^2 V = 0$$

Persamaan (2.4) menunjukkan bahwa distribusi potensial dalam medium homogen isotropis memenuhi persaman Laplace.

2.3 Potensial di Sekitar Titik Arus

2.3.1 Titik arus di dalam bumi

Pada media yang homogen isotropis, apabila arus searah dimasukkan melalui elektroda arus di permukaannya dan keluar secara radial dari titik arus menyebar ke segala arah dengan besar yang sama. Sedangkan elektroda dapat dipandang sebagai sebuah sumber arus yang berbentuk titik, maka penyebaran arus pada tanah yang homogen isotropis mempunyai simetri bola seperti pada gambar (2.1).

Gambar 2.1 Sumber arus didalam media homogen (Telford et al, 1990)

Andaikan tanah yang homogen isotrop itu resistivitasnya ρ, arus yang dimasukkan ke dalamnya I amper, dan potensialnya merupakan fungsi jarak (r),
maka persamaan Laplace dalam sistem koordinat bola dapat disederhanakan menjadi

\[
\frac{\partial^2 V}{\partial r^2} + \frac{2}{r} \frac{\partial V}{\partial r} = 0
\]

(2.5)

Dengan demikian penyelesaian untuk kasus ini adalah

\[
V = -\frac{A}{r} + B
\]

(2.6)

Dengan \(A\) dan \(B\) adalah tetapan yang dicari dengan syarat-syarat batas, pada \(r\) mendekati tak berhingga, \(V\) mendekati 0 maka \(B = 0\). Arus \(I\) mengalir melalui tanah menurut garis-garis arus yang tegak lurus pada bidang eksponensial yang berbentuk bola.

Sehingga jumlah arus yang keluar melalui permukaan bola dengan jari-jari \(r\) adalah:

\[
I = 4\pi r^2 J
\]

\[
= 4\pi r^2 \left(-\sigma \frac{\partial V}{\partial r}\right)
\]

\[
= -4\pi \sigma A
\]

(2.7)

apabila \(\sigma = \frac{1}{\rho}\)

maka \(I = -4\pi \frac{A}{\rho}\)

(2.8)

sehingga \(A = -\frac{I\rho}{4\pi}\)

(2.9)
Substitusi persamaan (2.9) ke dalam persamaan (2.6), sehingga diperoleh:

\[V = \frac{I \rho}{4 \pi r}, \]

\[\rho = 4 \pi r \frac{V}{I}, \]

atau \[I = 4\pi r \frac{V}{\rho} \] (2.10)

2.3.2 Titik arus pada permukaan bumi

Dari gambar (2.2) terlihat bahwa permukaan berpotensial merupakan setengah bola, elektroda arus tunggal \(C_1 \) diletakkan pada permukaan bumi yang homogen isotropis dengan konduktivitas di udara sama dengan nol.

Gambar 2.2 Arah penjalaran arus dengan injeksi di permukaan media homogen isotropis (Telford et al, 1990)

Pada kondisi batas ada beberapa hal yang berbeda dengan kondisi titik arus di dalam bumi meskipun \(B = 0 \) pada \(r = \infty, V = 0 \).
Pada bidang tanah dan udara \((Z = 0)\), \(\frac{\partial V}{\partial Z} = 0\), konduktivitas udara adalah

\[
\frac{\partial V}{\partial Z} = \frac{\partial}{\partial Z} \left(-\frac{A}{r} \right) = -\frac{\partial}{\partial r} \left(\frac{A}{r} \right) \frac{\partial r}{\partial Z} = \frac{AZ}{r^3} = 0 , \text{ pada } Z = 0
\]

Permukaan yang dilalui arus \(I\) adalah luas setengah bola sehingga

\[
A = \frac{Ip}{2\pi}
\]

maka diperoleh

\[
V(r) = \frac{Ip}{2\pi r}, \text{ atau } \rho = \frac{2\pi V}{I} \tag{2.12}
\]

2.3.3 Potensial dua elektroda arus di permukaan bumi

Apabila jarak antara dua elektroda tidak terletak di tempat yang jauh tak berhingga (lihat gambar (2.3)), maka potensial yang berada di sekitar permukaan akan terpengaruhi oleh kedua elektroda tersebut.

Gambar 2.3 Potensial yang ditimbulkan oleh elektroda arus pada permukaan bumi (Telford et al, 1990)

Karena potensial adalah suatu besaran skalar, maka baginya berlaku asas superposisi. Sehingga potensial pada sebuah titik dapat diperoleh dengan menjumlahkan potensial yang berasal dari masing-masing elektroda arus untuk
titik tersebut. Berdasarkan gambar (2.3), potensial pada titik M yang disebabkan oleh arus dari elektroda A adalah:

\[V_1 = \frac{I_0}{2\pi r_1} \]
(2.13)

potensial pada titik M yang disebabkan oleh elektroda B adalah:

\[V_2 = -\frac{I_0}{2\pi r_2} \]
(2.14)

potensial pada titik N yang disebabkan oleh elektroda A adalah:

\[V_3 = \frac{I_0}{2\pi r_3} \]
(2.15)

dan potensial pada titik N yang disebabkan oleh elektroda B adalah:

\[V_4 = -\frac{I_0}{2\pi r_4} \]
(2.16)

Karena arus dari elektroda A dan B sama besar dan berlawanan arah, maka potensial pada titik M adalah

\[V_M = V_1 + V_2 \]

\[= \frac{I_0}{2\pi} \left(\frac{1}{r_1} - \frac{1}{r_2} \right) \]
(2.17)

Dengan cara yang sama, diperoleh potensial dititik N adalah

\[V_N = V_3 + V_4 \]

\[= \frac{I_0}{2\pi} \left(\frac{1}{r_3} - \frac{1}{r_4} \right) \]
(2.18)
Sehingga beda potensial (ΔV) antara titik M dan N adalah:

$$\Delta V = V_M - V_N$$ \hspace{1cm} (2.19)

Dari persamaan (2.17) dan (2.18) disubstitusikan ke dalam persamaan (2.19), sehingga diperoleh:

$$\Delta V = \frac{i\rho}{2\pi} \left[\left(\frac{1}{r_1} - \frac{1}{r_2} \right) - \left(\frac{1}{r_3} - \frac{1}{r_4} \right) \right]$$ \hspace{1cm} (2.20)

$$\Delta V = \frac{i\rho}{2\pi} \left[\left(\frac{1}{AM} - \frac{1}{BM} \right) - \left(\frac{1}{AN} - \frac{1}{BN} \right) \right]$$ \hspace{1cm} (2.21)

$$\rho = 2\pi \left[\left(\frac{1}{AM} - \frac{1}{BM} \right) - \left(\frac{1}{AN} - \frac{1}{BN} \right) \right]^{-1} \frac{\Delta V}{I}$$ \hspace{1cm} (2.22)

$$\rho = K \frac{\Delta V}{I}$$ \hspace{1cm} (2.23)

Dengan $K = 2\pi \left[\left(\frac{1}{AM} - \frac{1}{BM} \right) - \left(\frac{1}{AN} - \frac{1}{BN} \right) \right]^{-1}$

2.4 Konfigurasi Elektroda

Ketiga tipe utama konfigurasi elektroda adalah:

1. Konfigurasi Wenner bertujuan mencatat perbedaan potensial antara dua elektroda potensial yang berjarak lebar dengan susunan keempat elektrodanya sama besar. Secara horisontal metode ini mempunyai resolusi vertikal yang tinggi.

Pada penelitian ini digunakan konfigurasi Schlumberger, elektroda arus mempunyai jarak yang lebih besar dibandingkan dengan elektroda potensial. Elektroda potensial ditempatkan pada pertengahan elektroda arus. Hal ini seperti pada gambar (2.4) di bawah ini. Elektroda arus dipindah-pindah sesuai jarak tertentu sampai hasil beda potensial sudah dianggap kecil
Berdasarkan besaran fisis yang diukur, susunan elektroda Schlumberger bertujuan untuk mengetahui gradien potensial listrik.

Faktor geometri dapat ditentukan melalui persamaan (2.23), sehingga diperoleh:

\[
K_S = \frac{2\pi}{\left(\frac{1}{a-b} - \frac{1}{a+b}\right) - \left(\frac{1}{a+b} - \frac{1}{a-b}\right)}
\]

\[= \pi \left(\frac{a^2 - b^2}{2b}\right) \quad (2.24)
\]

Dengan \(K_S\) adalah faktor geometri untuk konfigurasi Schlumberger, \(a\) adalah jarak elektroda arus ke pusat susunan elektroda, dan \(b\) adalah jarak elektroda potensial ke pusat susunan elektroda. Dari persamaan (2.23), dengan mengetahui harga \(V, I,\) dan \(K\) maka harga tahanan jenisnya dapat diketahui.

2.5 Tahanan Jenis Semu Batuan

Struktur bawah permukaan merupakan suatu lapisan-lapisan dengan tahanan jenis yang berbeda-beda.

Dengan asumsi bumi homogen isotropis, tahanan jenis yang terukur merupakan tahanan jenis yang sebenarnya dan tidak tergantung pada spasi

2.6 Air tanah

Air tanah adalah air yang bergerak dalam tanah yang terdapat di dalam ruang-ruang antara pori-pori tanah yang membentuk itu dan di dalam retak-retak dari batuan. Untuk menjadi aquifer, batuan yang tersingkap harus porous bersifat meluluskan air yang memungkinkan air hujan meresap ke batuan di bawahnya. Apabila batuan yang tersingkap tersebut bersifat kedap air dan tidak meluluskan air, maka air hujan tersebut akan mengalir sebagai air permukaan dan sedikit sekali atau tidak meresap ke batuan di bawahnya. Demikian juga batuan di bawahnya yang bersifat sarang dan lulus air tadi harus berketebalan cukup dan luas, sebagai penyimpan air dan bertindak sebagai aquifer (Sosrodarsono, 1987).

2.6.1 Lapisan permeabel dan lapisan impermeabel

Lapisan yang dapat dilalui dengan mudah oleh air tanah seperti lapisan pasir, lapisan kerikil, lapisan batupasir dan lapisan batugamping disebut lapisan permeabel. Lapisan yang sulit dilalui air tanah seperti lapisan lempung, shale, tuff halus dan lapisan silt disebut lapisan kedap air (aquiklude), dan lapisan yang
menahan air seperti lapisan granit, batuan-batuan yang kompak, keras dan padat
disebut lapisan kebal air (*aquifuge*). Kedua jenis lapisan ini disebut lapisan
impermeabel. Lapisan permeabel yang jenuh dengan air tanah disebut *aquifer*
(lapisan pembawa air).

2.6.2 Air bebas dan air terke Kang

Air tanah dalam *aquifer* yang tertutup dengan lapisan impermeabel dan
mendapat tekanan disebut air terke Kang. Air tanah dalam *aquifer* yang tidak
tertutup lapisan impermeabel disebut air tanah bebas atau air tak terke Kang.
Permukaan air tanah di sumur dan air tanah bebas adalah permukaan air bebas dan
permukaan air tanah dari *aquifer* adalah permukaan air terke Kang. Jadi permukaan
air bebas adalah batas antara zone yang jenuh dengan air tanah dan zone *aerasi*
tak jenuh) di atas zone yang jenuh.

2.6.3 Air tanah tumpang

Jika di dalam zone *aerasi* terbentuk sebuah lapisan impermeabel, maka air
tanah yang terbentuk di atas lapisan ini disebut air tanah tumpang. Air tanah
tumpang ini tidak dapat dijadikan sebagai suatu usaha pengembangan air tanah,
karena mempunyai variasi permukaan air dan volumenya yang besar.

2.7 Geologi Daerah Penelitian

Geologi daerah ini merupakan suatu antiklin dengan arah timur - barat dan
sesar geser dengan arah timur laut - barat daya. Indikasi yang terobservasi
adalah adanya pola kelurusan mata air. Setempat ditemukan adanya *mud*
volcano dengan kesadahan dan garam yang tinggi dikenal oleh penduduk
setempat sebagai "tanah ndut-ndut" merupakan suatu ciri adanya potensi hidrokarbon. Observasi lapangan menunjukkan adanya sumur bor yang dibuat pada jaman pendudukan Belanda, dengan kondisi telah rusak (patah dan tertimbun) dan tidak ditemukan data hasil pemboran.

Secara stratigrafi daerah penelitian termasuk kedalam stratigrafi Mandala Rembang. Stratigrafi Tersier Mandala Rembang telah diteliti oleh banyak ahli geologi (Gambar 2.5).

<table>
<thead>
<tr>
<th>AGE</th>
<th>LITHOLOGY</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 23</td>
<td>Dark greyish limestone</td>
<td></td>
</tr>
<tr>
<td>H 22</td>
<td>Dark greyish limestone</td>
<td></td>
</tr>
<tr>
<td>H 17</td>
<td>Dark grey limestone</td>
<td></td>
</tr>
<tr>
<td>H 20</td>
<td>Dark grey limestone</td>
<td></td>
</tr>
<tr>
<td>H 13</td>
<td>Dark grey limestone</td>
<td></td>
</tr>
<tr>
<td>M 10</td>
<td>Dark grey limestone</td>
<td></td>
</tr>
<tr>
<td>M 13</td>
<td>Dark grey limestone</td>
<td></td>
</tr>
<tr>
<td>N 14</td>
<td>Dark grey limestone</td>
<td></td>
</tr>
<tr>
<td>M 13</td>
<td>Dark grey limestone</td>
<td></td>
</tr>
<tr>
<td>N 10</td>
<td>Dark grey limestone</td>
<td></td>
</tr>
<tr>
<td>M 10</td>
<td>Dark grey limestone</td>
<td></td>
</tr>
<tr>
<td>N 9</td>
<td>Dark grey limestone</td>
<td></td>
</tr>
<tr>
<td>M 9</td>
<td>Dark grey limestone</td>
<td></td>
</tr>
<tr>
<td>H 8</td>
<td>Dark grey limestone</td>
<td></td>
</tr>
<tr>
<td>H 7</td>
<td>Dark grey limestone</td>
<td></td>
</tr>
<tr>
<td>H 5</td>
<td>Dark grey limestone</td>
<td></td>
</tr>
<tr>
<td>H 5</td>
<td>Dark grey limestone</td>
<td></td>
</tr>
<tr>
<td>P 14</td>
<td>Dark grey limestone</td>
<td></td>
</tr>
<tr>
<td>P 13</td>
<td>Dark grey limestone</td>
<td></td>
</tr>
<tr>
<td>P 12</td>
<td>Dark grey limestone</td>
<td></td>
</tr>
</tbody>
</table>

Gambar 2.5 Kolom stratigrafi Mandala Rembang (Datun dkk, 1996)
Secara sederhana stratigrafi Mandala Rembang terdiri dari:

- **Batuan Dasar Pra Tersier**
 Batuan pra Tersier hanya dapat diamati pada sumur-sumur pemboran minyak. Dari data sumur pemboran tersebut didapatkan batuan dasar pra Tersier terdiri dari batusabak, fillit, sekis dan granit yang berumur 100 juta tahun atau sepadan dengan Jaman Kapur.

- **Formasi Ngimbang**

- **Formasi Kujung**
- Formasi Prupuh

- Formasi Tuban

- Formasi Tawun

Formasi ini teramati penampang sumur pemboran BPM Tawun-5. Formasi ini tersusun oleh perselingan batupasir kwarsa, serpih pasiran, serpih dengan sisipan batugamping orbitoid dan ke atas dijumpai sisipan tipis lignit. Formasi ini berumur Miosen Awal hingga Miosen Tengah.

- Formasi Ngrayong

- **Formasi Bulu**

Formasi ini tersusun oleh batugamping koral dan serpihan gamping. Umur formasi ini adalah Akhir Miosen Tengah hingga Awal Miosen Akhir dengan lingkungan pengendapan laut zona neritik dangkal.

- **Formasi Wonocolo**

- **Formasi Ledok**

- **Formasi Mundu**

Formasi ini tersusun oleh napal. Umur formasi ini adalah Pliosen Awal dengan lingkungan pengendapan neritik dalam hingga batial atas.

- **Formasi Selorejo**

Formasi ini tersusun oleh batugamping dan batulempung kelabu tarang. Umur formasi ini adalah Pliosen Akhir dengan lingkungan pengendapan neritik dangkal.
Endapan yang paling muda di daerah ini adalah endapan gunungapi dan endapan alluvial undak sungai Bengawan Solo yang berada menutupi secara tidak selaras di atas seri batuan tersier.