BAB III
METODE PENELITIAN

III.1. Bahan dan Peralatan

Penelitian ini dilaksanakan di laboratorium Elektronika jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Diponegoro.

III.1.1. Bahan

Adapun bahan yang digunakan adalah: semikonduktor Extrinsic yaitu dioda Silikon IN4001, IN540 dan 8A05 serta dioda Germanium IS1555, OA90 dan OA60.

III.1.2. Peralatan

Sedangkan peralatan yang digunakan adalah:

III.1.2.1. TABUNG ISOLASI

Tabung ini merupakan tabung isolator dinding rangkap dengan dinding terbuat dari Aluminium dan gabus sebagai penyekatnya.

Gambar 3.1 Tabung Isolasi
Tabung ini berfungsi untuk menstabilkan suhu lingkungan bahan Semikonduktor agar bisa konstan pada suhu tertentu.

III.1.2.2.Volt Meter
Volt meter digital digunakan untuk mengukur tegangan yang di berikan ke bahan semikonduktor. Voltmeter ini mempunyai skala terkecil hingga 10 milivolt, sehingga hasil penelitian yang sesungguhnya dapat didekati.

III.1.2.3.Ampere meter
Ampere meter digital digunakan untuk mengukur arus yang keluar dari dioda. Seperti voltmeter ampermeter ini juga merupakan ampermeter digital dengan skala terkecil 0,1 mili amper.

III.1.2.4.Elemen Pemanas
Kawat lilitan yang digunakan untuk elemen ini adalah kawat konstantan. Sehingga arus listrik yang masuk dalam kawat ini hampir seluruhnya atau sebagian besar menjadi panas, sehingga besar induksi listrik dapat di abaikan.

Gambar 3.2. Elemen Pemanas
Karena berdasarkan pada rumus hukum ohm

\[V = I R \]

\[I = V / R \] \hspace{1cm} (3.1)

Sedang dari rumus daya listrik

\[P = V I \] \hspace{1cm} (3.2)

Dengan mensubtitusikan persamaan (3.1) ke persamaan (3.2) maka didapatkan

\[P = \frac{V^2}{R} \] \hspace{1cm} (3.3)

sehingga energi listrik dapat dituliskan sebagai

\[W = P t \] \hspace{1cm} (3.4)

dengan :

- \[V \] = Tegangan (Volt)
- \[R \] = Hambatan (ohm)
- \[i \] = Arus (Amper)
- \[P \] = Daya (Watt)
- \[W \] = Energi panas (Joule)
- \[t \] = Waktu (detik)

sedang dari persamaan Energi kalor dituliskan sebagai

\[Q = m C \Delta T \] \hspace{1cm} (3.5)

dengan :

- \[Q \] = kalor (Joule)
- \[m \] = Masa bahan logam yang dipanaskan (kg)
- \[C \] = Kapasitas kalor logam (Kalori/Kg °C)
- \[\Delta T \] = Perubahan Suhu (°C)

Maka besarnya energi listrik yang diubah menjadi energi termal sebesar

\[Q = P t \] \hspace{1cm} (Q dalam Joule) \hspace{1cm} (3.6)
Karena adanya variabel \(t \) pada persamaan (3.6) maka panas yang dihasilkan oleh pemanas bertambah terus dengan bertambahnya waktu. Untuk membuat suhu tetap, setelah suhu mencapai nilai diinginkan dan kemudian akan melampauiinya pencatu daya yang mensuplai tegangan untuk pemanas dimatikan hingga mencapai suhu yang kita inginkan. Kemudian ketika suhu mulai turun dari yang kita inginkan pencatu tegangan tersebut kita hidupkan kembali.

III.1.2.5. Pencatu Daya

Pencatu daya digunakan untuk mensuplai tegangan ke bahan semikonduktor (dioda). Sedangkan pencatu daya yang lain digunakan sebagai pensuplai tegangan ke pemanas. Dengan mengatur tegangan pada nilai tertentu maka kita bisa memvariasikan suhu

III.1.2.6. Thermometer

Termometer Celsius digunakan untuk melihat suhu ruangan tempat bahan semikonduktor di letakan. Termometer ini mempunyai skala terkecil hingga 0,5°C.

Sedangkan termometer yang lainya digunakan untuk memantau suhu lingkungan dioda sehingga kita dapat
memastikan suhu yang terukur pada termometer 1 adalah panas dari dioda yang sedang kita teliti.

III.2. Pengambilan Data

Langkah dalam penelitian ini adalah merangkai alat seperti pada gambar (3.1).

Mula-mula kita berikan tegangan tertentu ke dioda kemudian arus yang keluar dari dioda dicatat, kemudian tegangan perlahan dinaikan. Untuk setiap kenaikan tegangan dan arus yang keluar dari dioda dicatat.

Langkah selanjutnya menaikan suhu, dan dikerjakan seperti pada langkah pertama diatas.

Untuk setiap kenaikan suhu dicatat arus, tegangan dan suhu yang ditunjukan oleh Amper meter, volt meter

Gambar 3.3 Rangkaian percobaan
III.3. Analisa Data

III.3.1. Analisa Arus Balik Jenuh Pada berbagai Suhu

Arus balik jenuh dioda pada berbagai suhu di cari dengan melogaritmaikan persamaan (2.53) maka diperoleh persamaan (3.7) sebagai berikut:

\[
\ln I = \ln I_0 + \frac{q}{kT} V
\]

(3.7)

dengan:

\(q \) = Muatan elektron bebas (dalam C)

\(k \) = Konstanta Bolzman \((eV/K)\)

\(T \) = Suhu dioda \((^\circ K)\)

\(V \) = Tegangan dioda (Volt)

\(I \) = Arus Dioda (Amper)

Dari persamaan (3.7) diatas jika \(T \) dibuat konstan maka persamaan itu merupakan persamaan garis lurus dengan \(q/kT \) merupakan gradien garisnya dan \(\ln I_0 \) merupakan perpotongan grafik dengan sumbu \(\ln I \).

Dengan mengandaikan persamaan (3.7) sebagai persamaan liner

\[
Y = ax + b
\]

(3.8)

dengan:

\(V = x \),

\(a = q / kT \)

\(b = \ln I_0 \)
\[I_o = e^b \quad (3.9) \]

Nilai \(b \) dapat dicari dengan persamaan (Djono P, 1983)

\[b = \frac{N \sum X_n^2 Y_n - \sum X_n \sum Y_n}{K \sum X_n^2 - (\sum X_n)^2} \quad (3.10) \]

Sedangkan simpangan \(B \) dicari dengan persamaan (Djono P, 1983)

\[S_B = S_y \sqrt{\frac{\sum X_n^2}{N \sum X_n^2 - (\sum X_n)^2}} \quad (3.10) \]

dengan:

\[S_y = \frac{1}{N - 2} \sqrt{\frac{\sum X_n^2 (Y_n^2 - 2 \Sigma X_n \Sigma (X_n Y_n) \Sigma X_n + \Sigma (X_n Y_n)^2)}{N \sum X_n^2 - (\sum X_n)^2}} \]

maka simpangan \(I_o \) dicari dengan persamaan

\[S_{I_o} = e^b \cdot S_B \quad (3.11) \]

dengan;

\(I_o \) = Arus jenuh balik dioda

\(b \) = Perpotongan Grafik dengan sumbu \(L_n \) \(I \)

\(S_B \) = Simpangan \(b \)

Nilai korelasi yang merupakan kesempurnaan hubungan dua variabel acak \(X \) dan \(Y \) yang diamati dirumuskan sebagai (Djono P, 1983)

\[r = \frac{N \Sigma X_n Y_n - (\Sigma X_n)(\Sigma Y_n)}{\sqrt{\left\{N \Sigma X_n^2 - (\Sigma X_n)^2\right\} \left\{N \Sigma Y_n^2 - (\Sigma Y_n)^2\right\}}} \quad (3.13) \]

dapat dipenuhi nilai \(r \) yang mempunyai range \(-1 \leq r \leq 1\)
Arus yang digunakan dalam perhitungan adalah arus rata-rata sedang simpanganya dicari dengan persamaan sebagai berikut:

\[
SI = \sqrt{\frac{\sum (I-I) \, \gamma}{N(N-1)}}
\]

(3.14)
dengan:

\[
SI = \text{Simpangan Arus (amper)}
\]

\[
I = \text{Arus (amper)}
\]

\[
\bar{I} = \text{Arus rata-rata}
\]

\[
N = \text{Banyak pengukuran}
\]

III.3.2 Analisa Konstanta C

C merupakan konstanta yang bergantung dari jenis bahan semikonduktor nilai C ini dicari dari perhitungan-perhitungan berdasarkan persamaan (2.9) dan (2.56) yang disubtitusikan kepersamaan (2.54) dengan mengabaikan faktor \(T^{3+y/2}\) kemudian melogaritmakanya maka di peroleh persamaan (3.14) sebagai berikut

\[
\ln I_o = \ln CA_o - E\sigma(0)/kT
\]

(3.15)
dengan:

\[
I_o = \text{Arun Balik Jenuh dioda (Amper)}
\]

\[
F = \text{Konstanta Bahan Dioda (tak bersatuan)}
\]

\[
K = \text{Konstanta Bolzman (eV/K)}
\]

\[
T = \text{Suhu dioda (K)}
\]
yang juga merupakan persamaan linier, jika \(1/T\) di misalkan sebagai variabel \(X\) dan \(\text{Ln } I_0\) sebagai sumbu \(Y\). Pada persamaan (3.13) tersebut jika grafik dan sumbu \(\text{Ln } I_0\) berpotongan di titik \(z\), maka nilai \(z\) dapat dicari dengan persamaan (3.10) dan mengganti variabel \(b\) dengan \(z\) maka

\[z = \text{Ln } C_0 \quad \text{maka} \quad C = e^z/C_0 \quad (3.15) \]
sedang simpangan \(z\) dicari dengan

\[Sz = \frac{e^z S_z}{C_0} \quad (3.16) \]
dengan;

\(C\) = Konstanta jenis bahan semikonduktor
\(z\) = Perpotongan grafik dengan sumbu \(\text{Ln } I_0\)
\(A_0 = 4.9 \times 10^{15} \left(\frac{M_n^* M_p^*}{m_0^2} \right)^{3/4} \)
\(M_p^*\) = Masa efektif Lubang
\(M_n^*\) = Masa Efektif Elektron

sedang simpangan \(Z\) dan nilai korelasi dicari seperti pada persamaan (3.10) dan (3.13).

III.3.3.Analisa Ni untuk berbagai Suhu

Besar Ni dihitung dari persamaan (2.57) dengan menggunakan nilai \(I_0\) dan \(C\) yang didapatkan dari perhitungan sebelumnya. Dari persamaan (2.57)
\[I_0 = \frac{C T^{\gamma/2} n_i^2}{n_i} \quad \text{maka} \]

\[n_i = \sqrt{\frac{I_0}{C T^{\gamma/2}}} \] \hspace{1cm} (3.17)

dengan:

- \(n_i \) = Konsentrasi Intrinsik semikonduktor (\(m^{-3} \))
- \(I_0 \) = Arus balik jenuh (Amper)
- \(C \) = Konstanta semikonduktor (Amper/\(^{\circ}\)K)
- \(T \) = Suhu bahan semikonduktor (dalam Kelvin)
- \(\gamma \) = Suatu Konstanta (tak bersatuan)

Simpangan \(n_i \) di cari dengan persamaan

\[S_{ni} = \sqrt{\left\{ \frac{\partial n_i}{\partial I_0} S_{I_0} \right\} + \left\{ \frac{\partial n_i}{\partial C} S_{C} \right\} + \left\{ \frac{\partial n_i}{\partial T} S_{T} \right\}} \]

(3.10)