BAB III
METODOLOGI PENELITIAN

3.1. METODE RUCHHARD UNTUK MENENTUKAN γ

Jika silinder logam itu dipindahkan sedikit ke bawah, kemudian dilepaskan, maka silinder akan bergerak dengan periode T. Andaikan simpangan silinder logam dari kedudukan setimbang pada setiap saat adalah x, yang nilainya akan positif bila silinder logam berada di atas kedudukan setimbang dan negatif bila silinder logam berada di bawah kedudukan setimbang. Simpangan positif x akan menimbulkan penurunan tekanan yang sangat kecil dibandingkan tekanan p, sehingga dapat dinyatakan sebagai dp, dengan dp adalah kuantitas yang negatif.

Persamaan gerak yang terjadi jika perubahan penurunan tekanan dari kedudukan setimbang terjadi sebanyak dua kali ialah
\[
\frac{d^2x}{dt^2} = -2 \frac{dp}{V} A
\] (3.2)

Karena silinder logam bergetar cukup cepat, maka perubahan \(p \) dan \(V \) berlangsung secara adiabatik. Sehingga dapat diterapkan persamaan \(pV^\gamma = \text{konstan} \)

\[
dp = -p \frac{\gamma}{V} dV
\]

Dengan memasukkan persamaan di atas ke dalam persamaan (3.2) didapatkan

\[
\frac{d^2x}{dt^2} = -2 \frac{p \gamma A^2}{V}
\] (3.3)

Simpangan positif \(x \) (perubahan dari kedudukan setimbang piston ke keadaan dengan amplitudo maksimum) juga akan menyebabkan pertambahan volume yang sangat kecil dibanding volume setimbang \(V \), maka \(dV = A \delta \), sehingga persamaan (3.3) menjadi

\[
\frac{d^2x}{dt^2} + \frac{2 p \gamma A^2}{m V} x = 0
\] (3.4)

Persamaan (3.4) merupakan bentuk umum dari persamaan diferensial getaran selaras

\[
\frac{d^2x}{dt^2} + \omega^2 x = 0
\] (3.5)

dengan \(\omega \) adalah kecepatan sudut.
Besarnya kecepatan sudut persamaan (3.4) adalah

\[\omega^2 = \frac{2 \rho \gamma A^2}{m V} \]

kecepatan sudut \(\omega = \frac{2\pi}{T} \)

Periodenya diperoleh

\[T = 2\pi \sqrt{\frac{m V}{2 \rho \gamma A^2}} \] (3.6)

Frekuensinya diperoleh

\[f_0 = \frac{1}{2 \pi} \sqrt{\frac{2 \rho \gamma A^2}{m V}} \] (3.7)

di mana \(f_0 = \) frekuensi resonansi
\(\rho = \) tekanan gas
\(m = \) massa silinder logam / piston
\(V = \) volume gas
\(A = \) luas penampang dari tabung gelas

Frekuensi resonansi yang dihasilkan merupakan frekuensi yang berasal dari generator isyarat, yang akan mengakibatkan piston bergetar sesuai dengan frekuensi generator isyarat.
3.2. PERALATAN DAN BAHAN

Dalam menentukan nilai c_p^*/c_v^* dengan metode Rüchhard, peralatan dan bahan yang digunakan terdiri dari:

1. Alat resonansi elastis gas

Alat ini terdiri dari sebuah tabung gelas, silinder magnetik dan kumparan. Pada tabung gelas terdapat dua buah katup pada ujung atas dan ujung bawah, yang berfungsi untuk memasukkan atau mengeluarkan gas yang digunakan dalam eksperimen. Pada tabung gelas terdapat skala yang menyatakan besarnya volume gas. Adapun ukuran diameter dalam dari penampang lintang tabung adalah 1,385 cm, dan diameter luarnya adalah 1,8 cm.

Silinder logam bersifat magnetik terdapat di dalam tabung gelas dan berfungsi sebagai piston. Diameter dari piston magnetik ini adalah 1,38 cm, dengan panjang 2,0 cm serta beratnya 9,1 gram.

Peralatan lainnya yang juga termasuk dalam alat resonansi elastis gas adalah kumparan yang berfungsi untuk menghasilkan medan magnet jika dialiri arus listrik. Banyaknya lilitan kawat pada kumparan sebanyak 500 lilitan., dengan panjang kumparan 3 cm.

2. Generator isyarat

Fungsi dari generator isyarat adalah untuk menghasilkan sinyal keluaran dengan frekuensi tertentu. Sinyal keluaran yang dihasilkan dapat berupa gelombang sinus, gelombang segitiga atau gelombang persegi. Jangkauan frekuensi yang dihasilkan berkisar antara 0,1 Hz sampai dengan 20 KHz. Tegangan keluaran yang dihasilkan untuk semua tipe
sinyal adalah dari 0 sampai 12 Vpp, yang melalui hambatan 8 Ω. Generator isyarat ini dapat dioperasikan dengan tegangan AC eksternal 12 Volt.

3. Pencacah

Pencacah berfungsi untuk mencacah besarnya frekuensi yang dihasilkan oleh generator isyarat. Jangkauan frekuensi yang bisa dicacah berkisar dari 0 sampai 9999 Hz. Pencacah ini dapat beroperasi dengan sumber tegangan tinggi (PLN).

4. Power Supply

Power supply digunakan sebagai sumber tegangan AC untuk generator isyarat. Tegangan yang dihasilkan adalah 12 volt dengan arus 2,5 A.

5. Multimeter

Multimeter di sini digunakan untuk mengukur arus AC yang terdapat pada rangkaian percobaan.

6. Pompa tekanan

Fungsi dari pompa tekanan adalah untuk mengurangi tekanan gas yang berada dalam tabung gelas. Besarnya tekanan dinyatakan dalam skala mbar.

7. Klem dan statip

Berdasarkan untuk menegakkan alat resonansi elastis gas.

8. Kabel

Berdasarkan untuk menghubungkan peralatan elektrik yang digunakan.

9. Pipa plastik

Fungsi dari pipa plastik adalah untuk menyalurkan gas
masuk ke dalam tabung gelas.

10. Barometer

Berdasarkan untuk mengukur tekanan udara pada saat percobaan dilakukan. Besarnya tekanan dinyatakan dengan skala mbar.

11. Gas

Gas yang digunakan sebagai sampel percobaan terdiri dari gas CO₂, gas O₂ dan gas Ne. Gas tersebut terdapat dalam tabung bertekanan tinggi, yang dapat dikeluarkan dengan menggunakan katup pengatur.

<table>
<thead>
<tr>
<th>tipe gas</th>
<th>kemurnian</th>
<th>kandungan gas dalam tabung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neon</td>
<td>99,995 %</td>
<td>12 liter</td>
</tr>
<tr>
<td>Oksigen</td>
<td>99,0 %</td>
<td>5 liter</td>
</tr>
<tr>
<td>Karbondioksida</td>
<td>99,995 %</td>
<td>12 liter</td>
</tr>
</tbody>
</table>
3.3. LANGKAH KERJA

3.3.1. MENENTUKAN \(\gamma \) DENGAN MEMVARIASI VOLUME GAS

Peralatan dan bahan yang digunakan dirangkai terlebih dahulu seperti gambar 3.1.

amplitudo maksimum seperti terlihat sebelumnya tercapai kembali. Frekuensi resonansi yang terjadi pada tampilan pencacah dicatat. Dengan mengubah volume gas, maka akan didapatkan frekuensi resonansi yang berbeda pula.

3.3.2. MENENTUKAN γ DENGAN MEMVARIASI TEKANAN GAS

3.4. METODE PENGOLAHAN DATA

3.4.1. UNTUK VOLUME GAS BERVARIASI

Metode pengolahan data yang dilaksanakan untuk mendapatkan nilai perbandingan panas jenis gas pada tekanan konstan dan pada volume konstan adalah dengan menggunakan metode kuadrat terkecil.

Dalam penentuan nilai perbandingan c_k^p / c_k^v data yang diperoleh dari pengukuran adalah volume gas dan
frekuensi dari getaran piston yang dibangkitkan oleh frekuensi dari generator isyarat. Dari persamaan (3.7) diperoleh

\[f_0^2 = \frac{p \gamma A^2}{2 \pi^2 m} \frac{1}{V} \quad (3.8) \]

Persamaan (3.8) dapat dihubungkan dengan bentuk persamaan garis linier

\[Y = a X + b \quad (3.9) \]

Di mana a adalah gradien atau slope dari persamaan garis linier dan b adalah perpotongan dengan sumbu Y.

Dengan memplotkan seper volume gas \((1/V)\) pada sumbu X dan kuadrat frekuensi \((f_0^2)\) pada sumbu Y, maka gradien atau slope dari persamaan (3.8) adalah

\[a = \frac{p \gamma A^2}{2 \pi^2 m} \quad (3.10) \]

Dengan persamaan (3.10) dapat dicari nilai perbandingan panas jenis gas pada tekanan konstan dan volume konstan \((\gamma)\).

\[\gamma = \frac{2 a \pi^2 m}{p A^2} \quad (3.11) \]

Penentuan gradien persamaan garis lurus dapat diselesaikan dengan jalan menggambarkan titik-titik data di atas kertas grafik dan menarik garis lurus menurut pandangan. Tetapi salah satu cara yang lebih baik adalah dengan metode kuadrat terkecil, yang bisa mendapatkan hubungan fungsional yang lebih baik daripada cara menggambarkan dengan kira-kira.
Nilai a dan b dari persamaan (3.9) dapat ditentukan dari persamaan berikut ini,

\[a = \frac{n \sum x_n y_n - (\sum x_n)(\sum y_n)}{n \sum x_n^2 - (\sum x_n)^2} \] (3.12)

\[b = \frac{(\sum y_n)(\sum x_n^2) - (\sum x_n y_n)(\sum x_n)}{n \sum x_n^2 - (\sum x_n)^2} \] (3.13)

di mana n adalah banyaknya titik-titik terukur. X dan Y adalah dua variabel yang terukur. Dimana X adalah \(1/Y\) dan Y adalah \(f_0^2\).

Untuk menghitung ketakpastian dari \(\gamma\), maka dicari ketakpastian pada \(a\) (\(S_a\)), yaitu

\[S_a = S_Y \sqrt{\frac{n}{n \sum x_n^2 - (\sum x_n)^2}} \] (3.14)

dimana \(S_y\) dapat dihitung dari rumus

\[S_y^2 = \frac{1}{n-2} \left[\sum y_n^2 - \frac{\sum x_n^2(\sum y_n)^2 - 2\sum x_n(\sum x_n y_n)\sum y_n + n(\sum x_n y_n)^2}{n \sum x_n^2 - (\sum x_n)^2} \right] \]

Untuk menyatakan ukuran kesempurnaan hubungan antara dua variabel acak X dan Y yang diamati pada persamaan garis lurus \(Y = aX + b\), maka digunakan koefisien korelasi. Nilai koefisien korelasi dapat dihitung dengan rumus:

\[r = \frac{n \sum x_n y_n - (\sum x_n)(\sum y_n)}{[(n \sum x_n^2 - (\sum x_n)^2)(n \sum y_n^2 - (\sum y_n)^2)]^{1/2}} \] (3.15)

dan nilai \(r\) berkisar antara \(-1 \leq r \leq 1\).
Dengan didapatkannya ketakpastian \(a \) \((S_a)\), maka ketakpastian dari \(\gamma \) dapat dicari dengan menggunakan rumus

\[
S_\gamma = \frac{S_a}{a} \cdot \gamma \tag{3.16}
\]

3.4.2. UNTUK TEKANAN GAS BERVARIASI

Dalam penentuan nilai perbandingan \(\frac{c_p}{c_v} \) data yang diperoleh dari pengukuran adalah tekanan gas dan frekuensi dari getaran piston yang dibangkitkan oleh frekuensi dari generator isyarat. Dari persamaan (3.7) diperoleh

\[
f_o^2 = \frac{\gamma A^2}{2 \pi^2 m V} p \tag{3.17}
\]

Persamaan (3.16) dapat dihubungkan dengan bentuk persamaan garis linier seperti dalam persamaan (3.9). Dengan memplotkan tekanan gas \((p) \) pada sumbu \(X \) dan kuadrat frekuensi \((f_o^2) \) pada sumbu \(Y \), maka gradien atau slope dari persamaan (3.16) adalah

\[
a = \frac{\gamma A^2}{2 \pi^2 m V} \tag{3.18}
\]

Dengan persamaan (3.17) dapat dicari nilai perbandingan panas jenis gas pada tekanan konstan dan volume konstan \((\gamma) \),

\[
\gamma = \frac{2 a \pi^2 m V}{A^2} \tag{3.19}
\]
Dalam menentukan nilai a dan b dari persamaan (3.9) dapat dilakukan dengan menggunakan metode kuadrat terkecil. Dengan memasukkan nilai-nilai ke dalam persamaan (3.12) dan (3.13). Untuk mendapatkan ketakpastian dari γ dapat dicari dengan menggunakan persamaan (3.14) dan (3.16).