BAB II
DASAR TEORI

2.1. Hukum Gravitasi Newton

Dasar dari metode gaya berat adalah hukum gravitasi Newton, yang menyatakan adanya gaya tarik menarik, antara dua massa benda yang berada dalam medan potensial gravitasi. Gaya tarik menarik tersebut berbanding terbalik dengan kuadrat jarak antara kedua punca massa benda, dan berbanding dengan perkalian massa-massa tersebut dalam bentuk matematis tertulis

$$ F_{G} = -G \frac{m_1 \cdot m_2}{r^2} \hat{r} $$

(2.1.1)

dengan

$ F_{G} $: Gaya pada $ m_2 $
$ \hat{r} $: vektor satuan berarah dari $ m_1 $ ke $ m_2 $
$ r $: Jarak antara $ m_1 $ dan $ m_2 $
$ G $: Konstanta gaya berat umum = $ 6.67 \times 10^{-8} \text{cm}^3/\text{gr. sec}^2 $

Tanda minus menunjukkan bahwa gaya $ F_{G} $ berlawanan arah dengan vektor $ r $. Dari persamaan (2.1.1) dapat diperoleh percepatan massa $ m_2 $ terhadap $ m_1 $, yaitu membagi $ F_{G} $ dengan $ m_2 $. Jika $ m_1 $ adalah massa bumi (M) dan R adalah jari-jari bumi, maka percepatan massa $ m_2 $ yang berada dipermukaan bumi :
\begin{equation}
\bar{g}(r) = \frac{\bar{F}(r)}{m_2}
= -G \frac{M}{R^2} r
\end{equation}

Percepatan tersebut dikenal dengan percepatan gaya berat. Satuan percepatan gravitasi dalam sistem CGS adalah cm/det\(^2\) atau dalam geofisika eksplorasi dikenal sebagai 1 gal (1 mgal = 10\(^{-9}\) cm/det\(^2\))

2.2. Potensial Gaya Berat

Medan gaya berat merupakan medan konservatif karena kerja yang dilakukan untuk memindahkan suatu massa selama masih dalam pengaruh medan ini tidak tergantung pada lintasan yang dilaluinnya dan hanya tergantung pada posisi awal dan posisi akhir saja. Gaya berat merupakan vektor yang arahnya sepanjang garis yang menghubungkan dua buah pusat massa. Gaya ini menyebabkan adanya medan konservatif, yang dapat diturunkan dari potensial skalar U sebagai berikut:

\begin{equation}
\nabla U(r) = \frac{\bar{F}(r)}{m_2} = \bar{g}(r)
\end{equation}

dengan

\(m_2\) adalah suatu massa di permukaan bumi dan \(\bar{F}(r)\) adalah gaya tarik \(m_2\) terhadap \(m_1\) (bumi).

Dari persamaan tersebut akan diperoleh potensial gaya berat dalam bentuk:
Persamaan 2.2.3 merupakan potensial gaya berat yang menyatakan kerja yang dibutuhkan untuk memindahkan suatu massa dari jarak yang sangat jauh di luar bumi ke suatu titik yang jaraknya R dari pusat bumi M, melalui sembarangan lintasan. Bila ditinjau pada benda tiga dimensi:

Gambar 2.1 Potensial massa tiga dimensi
(Telford, 1976)

Gambar 2.1 menunjukkan sebuah massa tiga dimensi, besarnya potensial dan percepatan gaya berat di titik \(P \) dapat diperoleh dengan membagi massa m menjadi elemen-elemen kecil \(dm \). Efek totalnya diperoleh dengan mengintegrasikan seluruh elemen - elemen massa tersebut. Potensial yang disebabkan oleh elemen massa \(dm \) yang berjarak \(r \) dari titik \(P \), yaitu:

\[
U(r) = \int_{-\infty}^{r} g(r) \, dr = -GM \int_{-\infty}^{r} \frac{dr}{r^2} - \frac{GM}{r}
\]

(2.2.2)
\[dU = G \frac{dm}{r} = G \frac{\rho}{r} \ dx \ dy \ dz \]
dengan \(\rho = \text{rapat massa} \)
\[r = \sqrt{x^2 + y^2 + z^2} \]

Potensial yang ditimbulkan oleh seluruh massa \(m \) :
\[U = G \rho \ \int \int \int \frac{1}{r} \ dx \ dy \ dz \quad \text{(2.2.4)} \]

Percepatan gaya berat pada arah sumbu \(z \) diberikan oleh :
\[g_z = \frac{du}{dz} = -G \rho \ \int \int \int \frac{Z}{r^2} \ dx \ dy \ dz \quad \text{(2.2.5)} \]

2.3. Reduksi Gaya Berat

Data hasil pengukuran gaya berat dipermukaan bumi sangat bervariasi, hal tersebut disebabkan oleh banyak faktor. Faktor-faktor yang mempengaruhi itu dinamakan faktor-faktor koreksi. Adapun koreksi tersebut adalah : lintang, ketinggian, topografi, tidal, drift alat dan koreksi medan. Dari reduksi koreksi-koreksi tersebut terhadap data pengamatan dapat diperoleh nilai-nilai ukur \(g \) yang sebenarnya.

2.3.1. Koreksi Pasang Surut (Tidal)

Koreksi pasang surut adalah koreksi yang disebabkan adanya pengaruh tarikan massa benda-benda langit. Yang paling dominan adalah bulan dan matahari, karena jaraknya relatif dekat terhadap bumi, dan massanya relatif besar. Koreksi ini harus diperhitungkan karena
gravimeter mempunyai sensitivitas yang tinggi terhadap perubahan gaya berat. Besarnya koreksi pasang surut bumi ialah:

\[g_{ps} = g_m + g_b \]

dimana \(g_{ps} \) = koreksi pasang surut total
\(g_m \) = koreksi pasang surut akibat matahari
\(g_b \) = koreksi pasang surut akibat bulan

Koreksi ini diperhitungkan terhadap posisi bulan dan matahari berdasarkan waktu dilakukan pengukuran.

2.3.2. Koreksi Drift (Apungan)

\[A \text{ (drift)} = \frac{g_1(t_2) - g_1(t_1)}{t_2 - t_1} \]

dimana:

- \(g_1(t_1) \) = harga gaya berat dititik 1 pada \(t_1 \)
- \(g_1(t_2) \) = harga gaya berat dititik 1 pada \(t_2 \)
- \(t_1 \) = pembacaan pertama dalam 1 looping
- \(t_2 \) = pembacaan akhir dalam 1 looping

\(g \text{ mgal} \)

![Grafik g vs t](image)

Harga koreksi pada saat \(t \), dimana \(t_1 < t < t_2 \)

ialah \(K_A \text{ (drift)} : \)

\[K_A \text{ (drift)} = A \text{ (drift)} (t_2 - t_1) \]

Jadi harga \(g \) terkoreksi di titik \(x \) pada waktu \(t \) adalah

\[g_{(x)}^1 = g_{(x)} t + A \text{ (drift)} (t - t_1) \]

2.3.3. Koreksi Lintang

Karena bentuk bumi tidak bulat sempurna, melainkan berbentuk elipsoid, maka besarnya percepatan gaya berat bumi dipengaruhi juga oleh letak lintang titik amat.
Persamaan yang menyatakan besarnya gaya gravitasi normal atau teoritis pada suatu tempat dengan lintang geografi tertentu pada permukaan laut rata-rata menurut Geodetic References System 1980 (Komite Gaya Berat nasional, 1992):

\[g_\phi = g_\phi (1 + \beta_1 \sin^2 \phi - \beta_2 \sin 2\phi) \]

\[\beta_1 = 0.0053024 \]
\[\beta_2 = 0.0000058 \]
\[\phi = \text{sudut lintang (dalam radian)} \]
\[g_\phi = 9.780327 \text{ m/det}^2 \text{ (gravitasi di equator)} \]
\[g_\phi = g \text{ normal} \]

Dengan mengetahui besar sudut lintang titik amat, dapat diketahui besarnya gaya gravitasi normal di tempat tersebut pada bidang speroid (bidang khayal yang merupakan bidang ekipotensial) yang kemudian dikenakan terhadap data gaya berat di lapangan.

2.3.4. Koreksi Udara Bebas

Percepatan gravitasi bumi berbanding terbalik dengan kwadrat jarak antara titik pengamatan dengan pusat bumi, sehingga data percepatan gaya gravitasi titik-titik yang mempunyai beda tinggi terhadap permukaan laut rata-rata perlu dikenakan koreksi. Besarnya koreksi tersebut sebagai berikut:
Dari gambar 2.3 dapat dirumuskan percepatan gaya berat di stasiun adalah:

\[g(R + h) = G \frac{M}{(R + h)^2} = \frac{GM}{R^2} \left(1 - \frac{2h}{R} + \ldots \right) \]

dengan:

- \(M \): massa bumi
- \(R \): jari-jari bumi
- \(G \): konstanta gravitasi

Sedangkan percepatan gaya berat acuan:
\[g(R) = \frac{GM}{R^2} \]

Koreksi udara bebas sama dengan perbedaan harga gaya berat akibat beda tinggi:

\[(FAC) = g(R) - g(R + h) = 2 \frac{GM}{R^2} h \]

\[FAC = 0.3086 \, \text{h mgal} \]

\[h = (h\ \text{stasiun} - h\ \text{acuan})\ \text{meter} \]

2.3.5. Koreksi Bouguer

Jika pada koreksi udara bebas mengabaikan efek gravitasi akibat adanya massa yang terletak di antara titik amat dan permukaan laut rata-rata. Sehingga koreksi Bouguer adalah memperhitungkan massa tersebut. Apabila suatu titik amat terletak pada ketinggian \(h \) terhadap bidang datum, maka pembacaan percepatan gravitasi tersebut di titik tersebut menjadi lebih besar akibat adanya slab yang mempunyai ketebalan \(H \), sehingga koreksi Bouguer dikurangkan terhadap data percepatan gaya gravitasi dan sebaliknya.

![Diagram](https://via.placeholder.com/150)

Gambar 2.4 Kedudukan stasiun terhadap acuan

untuk koreksi Bouguer
Untuk memperhitungkan efek massa batuan di antara titik pengamatan dengan permukaan air laut rata-rata yaitu dengan menganggap massa batuan tersebut berupa silinder vertikal dengan jari-jari tak berhingga. Sehingga koreksi Bouguernya menjadi:

\[BC = 0.04191 \rho \cdot h \text{ mgal} \]

Penjelaran koreksi Bouguer dapat dilihat pada lampiran C.

2.3.6. Koreksi Medan / Topografi

Adanya massa bukit di sekitar titik pengamatan menimbulkan efek terhadap gaya gravitasi, sedangkan tidak adanya massa batuan pada lembah juga menyebabkan efek gaya gravitasi.

![Diagram Bukit dan Lembah](image)

Gambar 2.5 Koordinat Stasiun untuk koreksi medan

Dengan demikian koreksi medan/topografi harus selalu ditambahkan pada harga gaya gravitasi lapangan. Perhitungan dilakukan dengan membagi daerah sekitar titik pengamatan menjadi zona-zona berupa lingkaran-lingkaran konsentris dan tiap-tiap zona dibagi dalam beberapa segmen/kompartmenten. Nilai ketinggian, tiap bagian/segmen diperkirakan dari harga rata-rata kontur topografi yang melaluiinya. Efek massa tersebut
diperhitungkan sebagai bagian dari silinder vertikal dengan ketenggian berbeda-beda untuk masing-masing segmen, sehingga diperoleh:

\[g_z = - G \rho \Theta \left[\left(r_2^2 - r_1^2 \right) + (r_1^2 + L^2)^{1/2} - (r_2^2 + L^2)^{1/2} \right] \]

dimana
- \(r_1 \): jari-jari dalam zona
- \(r_2 \): jari-jari luar zona

Penjabaran koreksi medan terdapat pada lampiran C.
Pembagian daerah di sekitar titik pengamat dilakukan dengan Hammer Card. Diagram Hammer ditunjukkan seperti pada gambar 2.6.

Gambar 2.6 Diagram Hammer
2.3.7. Anomali Bouguer

Anomali Bouguer adalah perbedaan besar gaya berat bumi sesungguhnya (gravitasi pengamatan di lapangan) dengan besar gaya berat model bumi homogen (teoritis) di permukaan titik observasi. Sedangkan yang dimaksud dengan gaya berat teoritis ialah besar gaya berat normal dititik observasi, yang telah di koreksi terhadap perubahan ketinggian dengan asumsi "ideal body" (Ervin 1977). Dengan demikian \(g_{obs} \) didefinisikan sebagai, besar gaya berat hasil pengamatan di lapangan yang telah dikoreksi tidal dan drift.

Jadi besarnya anomali bouguer dapat dituliskan sebagai berikut:

\[
AB = g_{obs} - g_N \\
= g_{obs} - (g_\rho - FAC + BC - TC)
\]

\(AB \) = Anomali bouguer

\(g_{obs} \) = \(g \) observasi, sudah di koreksi tidal dan drift

\(g_\rho \) = \(g \) lintang

FAC = koreksi udara bebas

BC = koreksi Bouguer

TC = Koreksi medan

2.4. Turunan Vertikal Kedua

Jika digunakan simbol \(Ag \) sebagai komponen vertikal anomali bouguer, dipilih \(Z \) sebagai sumbu vertikal
yang positif kearah bawah dan dipilih x dan y sebagai sumbu horisontal dimana ketiga sumbu itu saling tegak lurus. maka akan diperoleh turunan vertikal kedua anomali yaitu \(\frac{\partial^2 \Delta g}{\partial z^2} \). Karena dipermukaan bumi dianggap tidak ada sumber potensial lain, maka fungsi anomali akan memenuhi persamaan Laplace:

\[
\nabla^2 \Delta g = 0
\]

dimana:

\[
\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}
\]

Jadi persamaan (2.4.1) menjadi:

\[
\frac{\partial^2 \Delta g}{x^2} + \frac{\partial^2 \Delta g}{y^2} + \frac{\partial^2 \Delta g}{z^2} = 0 \quad (2.4.2)
\]

dari persamaan (2.4.2) diperoleh turunan vertikal kedua gravitasi:

\[
\frac{\partial^2 \Delta g}{\partial z^2} = -1 \left(\frac{\partial^2 \Delta g}{\partial x^2} + \frac{\partial^2 \Delta g}{\partial y^2} \right) \quad (2.4.3)
\]

Rumus (2.4.3) memperlihatkan bahwa Turunan Vertikal Kedua anomali adalah jumlah dari Turunan Horisontal Kedua anomali sepanjang y dan sepanjang x dikalikan dengan -1.

Untuk Turunan Horisontal Kedua anomali sepanjang x dan y, secara matematis diketahui bahwa jika turunan horisontal kedua lebih besar dari nol atau berharga positif maka fungsi anomalinya akan cekung keatas,
berarti mempunyai harga minimum. Jika turunan horisontal kedua lebih kecil dari nol atau berharga negatif maka fungsi anomalinya akan cekung ke bawah, berarti mempunyai harga maksimum.

Dari rumus (2.4.3), terlihat bahwa harga turunan vertikal kedua anomali merupakan kebalikan dari jumlah harga turunan horisontal kedua sepanjang x dan y. Hal ini berarti jika harga turunan vertikal kedua lebih besar dari nol atau berharga positif, maka fungsi anomalinya akan cekung ke bawah, berarti mempunyai harga maksimum. Jika harga turunan vertikal kedua lebih kecil dari nol atau berharga negatif, maka fungsi anomalinya akan cekung ke atas, berarti mempunyai harga minimum.

Tujuan utama dari analisa turunan vertikal kedua data anomali Bouguer adalah ingin menonjolkan benda-benda penyebab anomali yang dangkal. Hal ini dapat dijelaskan sebagai berikut : misalkan kita mempunyai dua massa titik pada kedalaman \(a_1 \) dan \(a_2 \) dimana \(a_2 > a_1 \), maka anomali maksimumnya \(\Delta g_1 \) dan \(\Delta g_2 \) akan mempunyai perbandingan \(a_2^2/a_1^2 \). Harga maksimum Turunan Vertikal pertamanya \(\delta \Delta g \) dan \(\delta Z \) mempunyai perbandingan \(a_2^3/a_1^3 \) yang lebih besar dari \(a_2^2/a_1^2 \), dan harga maksimum turunan vertikal kedua \(\delta^2 \Delta g/\delta Z^2 \) mempunyai harga perbandingan \(a_2^4/a_1^4 \) yang lebih besar dari \(a_2^3/a_1^3 \). Jadi terlihat bahwa turunan vertikal kedua gravitasi yang berturut-turut
akan memperbesar efek relatif massa-massa titik yang lebih dangkal.

2.4.1. Turunan Vertikal Kedua Gravitasi Menurut R.G. Henderson dan I. Ziets

(Henderson R.G. and Ziets I., 1949)

Gambar 2.7 Kedudukan titik-titik kisi

Perhatikan gambar 2.7, yaitu data gravitasi yang berbentuk kisi dengan jarak kisi s. Untuk mencari
turunan vertikal kedua gravitasi di titik 0, dengan menggunakan satu data di titik 0 yaitu \(f(0)\) dan dengan memperhatikan empat data pada jarak \(s\) dari titik 0 yaitu \(f(s_1), f(s_2), f(s_3), f(s_4)\); empat data pada jarak \(s\sqrt{2}\) dari 0 yaitu \(f(s\sqrt{2}_1), f(s\sqrt{2}_2), f(s\sqrt{2}_3), f(s\sqrt{2}_4)\); empat data pada jarak \(2s\) dari titik 0 yaitu \(f(2s_1), f(2s_2), f(2s_3), f(2s_4)\). Turunan vertikal kedua di titik 0 dapat dicari (lihat lampiran D).

Dari persamaan turunan vertikal kedua pada titik 0 dengan menggunakan empat titik terlihat dengan jarak \(s\sqrt{2}\) dapat ditulis:

\[
\frac{\partial^2 f}{\partial z^2} = \frac{2}{s^2} \left\{ 3f(0) - 4f(s) + f(s\sqrt{2}) \right\} \tag{2.4.4}
\]

sedangkan pada jarak \(2s\) dapat ditulis:

\[
\frac{\partial^2 f}{\partial z^2} = -\frac{1}{3s^2} \left\{ 21f(0) - 32f(s) + 12f(s\sqrt{2}) - f(2s) \right\} \tag{2.4.5}
\]

dengan:

\[
\frac{\partial^2 f}{\partial z^2} = \text{turunan vertikal kedua gravitasi di titik 0}
\]

\(s = \text{jarak kisi}\)

\(f(0) = \text{harga gravitasi rata-rata di titik 0}\)

\(f(s) = \text{harga gravitasi rata-rata di titik yang mempunyai jarak } s \text{ dari titik 0}\)

\(f(s\sqrt{2}) = \text{harga gravitasi rata-rata di titik yang mempunyai jarak } s\sqrt{2} \text{ dari titik 0}\)

\(f(2s) = \text{harga gravitasi rata-rata di titik yang mempunyai jarak } 2s \text{ dari titik 0}\)
2.5. Sesar

Sesar merupakan patah dan bergesernya lapisan tanah. Adapun arah pergeseran lapisan tanah itu bisa secara vertikal dan bisa juga secara horisontal. Sehingga dikenal ada tiga jenis sesar utama yaitu:

Sesar Naik

\[\text{Sesar Turun} \]

\[\text{Sesar Geser} \]

Gambar 2.6 Berbagai struktur sesar
Profil anomali bouguer yang terbentuk untuk daerah sesar dapat diperkirakan sebagai berikut:

Struktur sesar dapat didekati sebagai dua lapisan semi horizontal yang salah satunya tergeser secara vertikal sebagai gambarannya dapat dilihat pada lampiran B. Profil khas patahan seperti profil sesar normal dengan sudut kemiringan diantara 30° dan 90°, dan profil sesar normal dengan kemiringan 150° dapat digambarkan sebagai berikut (Telford, 1978):

a. Sesar dengan kemiringan 30°
Menurut Telford persamaan gravitasi untuk lapisan dengan berbagai sudut kemiringan dapat ditulis sebagai berikut:

\[g = 2 \, G \, \rho \, t \left[\frac{1}{2} \sin \alpha \log \left(\frac{(h + 1 \sin \alpha)^2 + (x + 1 \cos \alpha)^2}{(x^2 + h^2)} \right) \right. \]

\[- \cos \alpha \left\{ \tan^{-1} \left[\frac{h \sin \alpha + 1 + x \cos \alpha}{x \sin \alpha - h \cos \alpha} \right] \right. \]

\[- \tan^{-1} \left[\frac{h \sin \alpha + 1 + x \cos \alpha}{x \sin \alpha - h \cos \alpha} \right] \} \] (2.5.1)

Sedangkan untuk lapisan tipis horizontal (\(\alpha = 0 \)) dapat ditulis sebagai berikut:

\[g = 2 \, G \, \rho \, t \left\{ \tan^{-1}(1-x)/h + \tan^{-1}(x/h) \right\} \] (2.5.2)

Bila \(h \) merupakan kedalaman ke pusat sumbu.

Jika \(l \) maka akan didapat efek gaya berat lapisan
horizontal semi infinite sebagai berikut :

\[g = 2 G \rho t \left[\pi + \tan^{-1} \left\{ \frac{x}{h_1} + \cot \alpha \right\} - \tan^{-1} \left\{ \frac{x}{h_1} + \cot \alpha \right\} \right] \quad (2.5.3) \]

dengan :
\(h_1 \) = kedalaman lapisan sebelah kanan sesar, yaitu dari permukaan sampai pertengahan lapisan.
\(h_2 \) = kedalaman lapisan sebelah kiri sesar, yaitu dari permukaan sampai pertengahan lapisan.
\(\alpha \) = sudut kemiringan bidang datar
\(t \) = tebal lapisan