BAB II
LOG MEKANIK

II.1. Tinjauan Umum

Log mekanik dan cara interpretasinya memainkan peranan penting dalam proses pengambilan keputusan eksplorasi minyak bumi. Peralatan Log Mekanik dikembangkan dari waktu ke waktu sehingga makin lama semakin canggih dan akurat dalam mencapai tujuan yang diinginkan, yaitu membantu interpretasi untuk mengetahui sifat petrofisika formasi batuan. Sifat petrofisika tersebut berupa jenis litologi, porositas, bentuk geometri pori-pori batuan serta kelulusan batuan.

Data logging juga dipakai dalam mengidentifikasi zona-zona batuan yang mengandung hidrokarbon, menentukan kedalaman zona-zona tersebut serta membedakan jenis fluida yang dikandung oleh formasi batuan. Data logging juga dapat dikembangkan dalam bentuk peta fasies. Peta fasies ini sangat membantu dalam menentukan lokasi titik pemboran selanjutnya serta untuk mengetahui penyebaran formasi batuan.

II.2. Prosedur Analisa Dan Interpretasi Log

Evaluasi formasi dapat dilakukan melalui 2 cara tahapan analisis dan interpretasi yang berurutan pelaksanaannya. Tahap pertama dilakukan bersamaan dengan berlangsungnya proses pemboran yang dikenal sebagai mud logging. Jenis pekerjaannya berupa analisis lumpur pemboran atau dapat pula
berupa analisis inti bor. Tahap ke dua dilakukan setelah pemboran dinyatakan selesai dan peralatan bor sudah diangkat dari sumur.

II.2.1. Mud Logging

Mud Logging adalah pencatatan atau perekaman serta analisis lumpur pemboran secara terus bersamaan dengan berlangsungnya proses pemboran.

Tujuan pekerjaan ini adalah mendapatkan keterangan tentang kandungan hidrokarbon dalam serbuk atau lumpur bor. Serbuk ini merupakan wakil dari formasi batuan yang sedang dibor. Analisis yang dilakukan meliputi deteksi jenis fluida hidrokarbon dan *lag time*.

Jika dalam proses pemboran menembus formasi batuan yang mengandung gas atau minyak bumi, maka ke duanya akan terbawa ke permukaan bumi bersamaan dengan aliran serbuk bor. Di permukaan bumi, gas dan minyak bumi tersebut dianalisa jenis dan konsentrasi yang menggunakan *hot-wire gas detector* atau *gas chromatograph*.

Analisa serbuk bor didasarkan pada waktu tempuh atau *lag time*. Waktu tempuh ini dapat dipakai untuk mengetahui berapa lama serbuk bor akan diperoleh kembali di permukaan untuk dianalisa.
II.2.2. Pengintian (Coring)

Pekerjaan pengintian dapat dilakukan melalui dua cara. Yang pertama adalah pengintian samping (side-wall coring) yang dilakukan setelah peralatan bor diangkat atau dengan cara yang ke dua yang dilakukan bersamaan proses pemboran (vertikal coring).

Tujuan pengintian adalah mendapatkan contoh batuan yang akan diteliti di dalam laboratorium agar diperoleh informasi langsung dan lebih detail terutama dalam hal jenis litologi serta parameter fisika yang lain dari formasi atau reservoir. Satu hal yang lebih spesifik adalah pengintian samping, karena pengintian ini sudah diarahkan pada lapisan batuan yang diduga kuat mengandung hidrokarbon.

II.2.3. Wireline Logging

Pada prinsipnya, logging ini bertujuan merekam gejala-gejala fisik dari batuan yang dibor secara langsung atau tidak langsung kedalam bentuk konfigurasi kurva log. Pekerjaan logging ini dilakukan sebelum dinding sumur ditutup casing dengan menggunakan alat yang disebut sonde. Sonde ini kemudian diturunkan ke dalam dasar sumur. Setelah mencapai dasar sumur, maka mulailah kegiatan logging tersebut sambil menarik sonde ke atas.

Sonde mengandung alat ukur dan cartridge yang dapat digerak-gerakkan secara elektronis. Peralatan ini mampu memancarkan sinyal-sinyal secara mekanis ke dalam formasi batuan. Setelah menembus formasi batuan, sinyal tersebut
diangkap kembali oleh alat didalam sonde selanjutnya dikirim ke permukaan bumi melalui kawat baja penghubung yang didalamnya mengandung kabel penghantar. Di permukaan bumi, sinyal tersebut dapat dilihat melalui komputer dalam bentuk defleksi kurva serta direkam dalam pita film untuk dicetak.

II.3. Peralatan Log Mekanik Sumur Pemboran

II.3.1. Spontaneous Potential Log

Spontaneous Potential Log (log SP) pada prinsipnya adalah merekam perbedaan arus listrik yang terjadi secara alamiah di dalam formasi batuan. Kurva spontaneous potential merupakan gambaran informasi yang sederhana dari lubang bor tentang keadaan batuannya.

Kurva tersebut tergambar pada skala kedalaman pada jalur kiri dari log, kurva tergambar berdasarkan perbedaan antara tegangan dari elektroda yang ada di dalam lubang bor dengan tegangan normal pada elektroda yang ada di permukaan.

Kurva SP dipergunakan untuk:

- Mendeteksi adanya lapisan porous permeable.
- Menentukan kedalaman lapisan tersebut guna keperluan korelasi.
- Sebagai data untuk mengevaluasi harga resistivitas air formasi, Rw.
- Memberikan indikasi secara kualitatif dari lapisan yang mengandung shale (lempung).
Penggambaran kurva SP pada lapisan shale umumnya konstan dan agak merata, hampir mengikuti jalur skala pada log dan hal itu dinamakan shale base line. Sebaliknya pada lapisan permeable kurva tersebut akan menunjukkan adanya penyimpanan-penyimpanan dari base line-nya. Pada lapisan porous permeable yang cukup tebal penyimpanan kurvanya juga menebal (lebar dan panjang) sesuai dengan ketebalan lapisan dan biasa mempunyai penyimpanan yang konstan, keadaan ini disebut sebagai sand line.

II.3.1.1 Asal terbentuknya arus SP

Adanya tenaga gerak listrik elektromotive force (Emf) dalam batuan, yang merupakan gabungan dari tenaga gerak elektrochemical dan electrokinetik merupakan sumber timbulnya arus SP. Tetapi pada kenyataannya, tenaga gerak elektrochemical akan jauh lebih berpengaruh dari pada tenaga gerak electrokinetik dalam pembentukan arus, sehingga di dalam perhitungan besarnya beda potensial yang timbul dalam batuan tenaga gerak electrokinetik ini diabaikan.

Beda potensial yang timbul karena adanya tenaga gerak elektrochemical terdiri dari potensial yang berasal dari adanya membran serpih (Em) dan potensial yang timbul dari kontak antara dua cairan penghubung (Ej), yaitu antara air formasi dengan filtrat lumpur yang mempunyai daya aktivitas kimia yang berbeda. Adanya Em dan Ej ini selalu dikaitkan dengan struktur atom dari serpih, karena struktur dari serpih atau lempung yang bermuatan negatif hanya akan
Gambar 2. Kedalaman Shale base line dan Sand line pada kurva log SP.
menarik kation dari media lain. Sehingga dengan adanya perbedaan konsentrasi salinitas air formasi dengan lumpur pemboran akan mengakibatkan aliran kation Na⁺ dari media yang mempunyai konsentrasi salinitas lebih besar menuju ke media yang konsentrasi salinitasnya relatif kecil melalui membran serpih (HELANDER, D.P. 1976).

Bila konsentrasi salinitas air formasi pada batuan yang lulus lebih besar dari pada konsentrasi salinitas lumpur pemboran maka akan terjadi aliran kation Na⁺ dari lapisan batuan yang lulus lewat lapisan serpih munuju kedalam lumpur pemboran dan kembali lagi ke dalam lapisan batuan yang lulus. Setiap aliran ini akan mengenai batas lapisan batuan dan karena adanya perbedaan potensial antara batuan yang lulus dengan batuan yang kedap maka akan terjadi defleksi pada kurva SP yang tercatat dipermukaan, defleksi terbesar terjadi pada lapisan yang lulus. Defleksi kurva SP akan mempunyai harga yang negatif bila berada disebelah kiri pada shale base line dan mempunyai harga positif bila berada disebelah kanan shale base line.

II.3.1.2. Faktor-faktor yang mempengaruhi bentuk kurva SP

Bentuk dari defleksi kurva SP yang tercatat dipermukaan dipengaruhi oleh faktor-faktor antara lain:

- Ketebalan lapisan batuan

Semakin tebal lapisan batuan yang terukur maka akan didapatkan amplitudo kurva SP yang sebenarnya dan semakin tipis lapisan batuan yang terukur maka akan mengurangi
amplitudo kurva SP yang sebenarnya.

- Keserpihan (shaliness) lapisan batuan

Pertambahan kandungan serpih atau lempung dalam lapisan batuan akan memperkecil amplitudo kurva SP.

- Diamater invasi fitrat lumpur

Makin besar diameter invasi fitrat lumpur maka akan mengurangi amplitudo kurva SP.

- Diameter lubang bor

Penambahan diameter lubang bor akan mengurangi amplitudo kurva SP.

- Tahanan jenis lapisan batuan

Semakin besar tahanan jenis lapisan batuan yang terukur dibandingkan dengan tahanan jenis lumpur bor maka akan semakin mengurangi amplitudo kurva SP.

- Salinitas air formasi dan salinitas lumpur bor

Bila salinitas air formasi lebih besar dari pada salinitas lumpur bor maka defleksi kurva SP akan negatif dan bila sebaliknya maka defleksi kurva SP akan positif.

II.3.2. Gamma-ray Log

Log sinar gamma (Gamma-ray log) pada hakekatnya adalah merekam besarnya intensitas radioaktif sinar γ yang memancar secara alamiah di dalam formasi batuan. Pada jenis formasi serpih atau lempung, kandungan unsur radioaktif cukup tinggi sehingga defleksi log sinar gamma akan tinggi sedang pada batu pasir kandungan unsur radioaktifnya rendah, harga

defleksi kurva log juga rendah. Defleksi kurva log akan semakin besar dengan bertambahnya kandungan serpih atau lempung.

Volume serpih atau lempung (Vclay) didalam formasi batu pasir lempung dapat ditentukan melalui rumus (Schlumberger, Log Interpretation):

\[
V_{clay} = \frac{GR_{log} - GR_{min}}{GR_{max} - GR_{min}}
\]

GR log adalah pembacaan kurva log sinar gamma.
GR max adalah harga pembacaan kurva log sinar gamma yang paling besar yaitu pada horizon serpih atau lempung.
GR min adalah harga pembacaan kurva log sinar gamma minimum yaitu pada batu pasir.

Log sinar gamma sangat berguna dalam mengidentifikasi jenis batuan serpih atau lempung, batu pasir. Disamping itu juga dapat pula dipakai menunjukkan lapisan non radioaktif seperti batubara.

<table>
<thead>
<tr>
<th>Peralatan</th>
<th>Satuan Lama</th>
<th>Satuan API</th>
</tr>
</thead>
<tbody>
<tr>
<td>GNT-F or G Gamma-Ray</td>
<td>1 ugm Ra-equ/ton</td>
<td>16.5</td>
</tr>
<tr>
<td>GNT-J,K Gamma-Ray, GLD-K</td>
<td>1 ugm Ra-equ/ton</td>
<td>11.7</td>
</tr>
</tbody>
</table>

Tabel Konversi satuan lama ke satuan API (Schlumberger, Gamma-ray log).
II.3.3 Tahanan Jenis (Resistivity)

Tahanan jenis suatu medium adalah hambatan atau tahanan yang diberikan oleh medium tersebut terhadap adanya arus listrik yang melaluinya, semakin besar hambatan yang diberikan berarti semakin besar pula tahanan jenisnya. Secara kuantitatif besarnya tahanan jenis suatu medium :

\[\rho = \frac{(R \cdot A)}{L} \]

\(\rho \) = Tahanan jenis (ohm meter)

\(R \) = Tahanan

\(A \) = Luas \((m^2) \)

\(L \) = Panjang \((m) \)

Sebaliknya semakin besar konduktivitas suatu medium akan semakin kecil tahanan jenisnya, dimana :

\[R = \frac{1}{\sigma} \]

\(\sigma \) = Konduktivitas

Didalam melakukan perhitungan tahanan jenis pada suatu sumur pemboran (gambar 6), keadaan disekitar lubang bor dibagi menjadi 3 bagian, yaitu :

a. Zona tidak terinvasi, yaitu daerah dimana tidak terpengaruh oleh invasi lumpur pemboran. Pada zona ini terdapat hubungan :

\[F = \frac{R_o}{R_w} \]

\(F \) = Faktor formasi, yang merupakan fungsi dari tekstur batuan.

\(R_o \) = Tahanan jenis formasi, bila formasi tersebut 100 % jenuh air.

\(R_w \) = Tahanan jenis air.
Oleh Archi (Schlumberger, Weel logging), F diidentifikasikan dengan keserangan (ϕ) yang secara empiris didapatkan bahwa:

$$ F = a \cdot \phi^{-m} $$

a = Bilangan yang diambil secara empiris, berkisar antara 0,81 - 1.

m = Faktor sementasi, berkisar antara 1,3 - 2,2.

Sehingga secara grafik hubungan antara F, ϕ, m, berdasarkan persamaan:

$$ \log F = -m \log \phi + \log a $$

akan merupakan suatu persamaan garis linier (gambar 5)

Gambar 5. Grafik hubungan antara F, ϕ dan m.

(PIRSON, S.J. 1965)
Rumus Archie ini bila digunakan untuk perhitungan pada soft formations diberi batasan:

\[F = 0.81 \cdot \phi^{-2} \]

Atau menggunakan rumus Humble (Schlumberger, Log Interpretation Principle Volume I) yang merupakan modifikasi dari rumus Archie berdasarkan suatu percobaan, yaitu:

\[F = 0.62 \cdot \phi^{-2.15} \]

Sedang untuk perhitungan pada hard formations, rumus Archie diberi batasan:

\[F = \phi^{-2} \]

Pada zona ini hubungan tahanan jenis formasi (Rt) dengan kejenuhan air formasi (Sw), juga dikemukakan oleh Archie, yaitu:

\[Sw^n = I = \frac{Rt}{Ro} \]

\[n = \text{Indek kejenuhan, biasanya diambil 2.} \]

\[Sw' = \frac{Rt}{Ro} \]

\[Sw^2 = \frac{Rt}{Ro} = \frac{F \cdot Rw}{Rt} \]

\[Sw = \sqrt{F \cdot Rw} \]

Secara grafik hubungan antara I, Sw dan n (gambar 5), adalah berupa garis linier berdasarkan persamaan:

\[\log I = \log \frac{Rt}{Ro} = -n \log Sw \]

b. Zona peralihan, yaitu daerah yang lebih jauh dari zona terinvasi dimana terjadi pergantian secara berangsur-angsur harga Rxo menjadi Rt dan bila batas peralihan jelas maka tidak terdapat zona peralihan.

\[\begin{align*}
R_m &= \text{Tahanan jenis lumpur} \\
R_s &= \text{Tahanan jenis lapisan yang berada di atas/bawah} \\
R_{mc} &= \text{Tahanan jenis kerak lumpur} \\
R_t &= \text{Tahanan jenis formasi pada zona tidak terinvasi} \\
R_{mf} &= \text{Tahanan jenis filtrat lumpur} \\
R_w &= \text{Tahanan jenis air formasi} \\
R_{xo} &= \text{Tahanan jenis formasi pada zona terinvasi} \\
S_w &= \text{Kejenuhan air pada zona tidak terinvasi} \\
S_{xo} &= \text{Kejenuhan air pada zona terinvasi} \\
h &= \text{Ketebalan lapisan} \\
h_{mc} &= \text{Ketebalan kerak lumpur} \\
d_h &= \text{Diameter lubang bor} \\
d_j &= \text{Diameter zona terinvasi}
\end{align*} \]
c. Zona terinvasi, yaitu daerah dimana terjadi filtrasi lumpur pemboran dan pengusiran fluida yang terdapat dalam formasi. Pada zona ini hubungan antara tahanan jenis formasi dan kejenuhan air formasi juga dinyatakan dalam rumus Archie (Schlumberger, Well Logging), yaitu:

\[S_{xo}^n = \frac{F \cdot Rmf}{Rxo} \]

dimana, \(n = 2 \)

II.3.3.1. Induction Elektrik Log

Peralatan log induksi telah dikembangkan dengan adanya koil tambahan yang mampu menghasilkan arus elektromagnet terfokuskan. Hal ini berguna terutama untuk menghasilkan pengaruh lapisan di atas dan di bawah dari lapisan formasi batuan yang diteliti.

Jangkauan penelitian log induksi ini cukup dalam yaitu pada zona tak terinvasi. Harga defleksi kurva log merupakan harga tahanan jenis sesungguhnya (Rt).
Log induksi sangat berguna terutama untuk menentukan jenis fluida di dalam formasi batuan, kejenuhannya, serta porositas batuan. Log ini sangat baik untuk lapisan yang tipis (minimal sekitar 5 kaki).

II.3.3.1.1 Prinsip peralatan induksi

Jika ada sebuah kumparan (coil) dan bila pada kumparan tersebut dialirkan arus listrik, maka akan terbentuk medan magnit seperti digambarkan sebagai berikut:

![Diagram Log Induksi 1]

Gambar 7. Prinsip peralatan log Induksi.

Sebaliknya bila medan magnit atau aliran magnetik melalui sebuah kumparan, maka akan terjadi arus listrik melalui kumparan tersebut.

![Diagram Log Induksi 2]

Gambar 8. Terjadinya arus listrik peralatan log Induksi.
Bila dua macam kumparan dikombinasikan maka akan terlihat bahwa arus magnetik yang dikirim melalui kumparan A akan diterima oleh kumparan B, dimana tidak diperlukan perantara di antara kumparan A dan B karena medan magnetik dapat melalui penyekat seperti udara atau minyak.

Pada lubang bor, formasi sekeliling dapat merupakan bentuk dari kumparan yang efektif karena dalam hal ini arus listrik yang akan terjadi akan tergantung pada konduktivitas dari formasi dan sebaliknya formasi akan membentuk juga medan magnit yang nantinya akan diterima oleh peralatan penerima atau receiver pada peralatan dari pada induksi.

II.3.3.2. Microspherically Focused Log

Mikrospherically Focused Log (MSFL) merupakan salah satu jenis log tahanan jenis mikro yang dalam pengukurannya menggunakan arus listrik terfokuskan. Jenis log mikro lainnya adalah Microlaterolog (MLL) dan Proximity Log (PML).

Jangkauan penyelidikan log ini sangat dangkal. Harga tahanan jenis yang terbaca adalah tahanan jenis zona invasi...
(flushed zona) atau Rxo. Ketidaketeraturan bentuk lubang bor juga akan mempengaruhi nilai tahanan jenis. Log MSFL ini dapat dipakai untuk menentukan batas perlapisan atau formasi batuan, batas fluida formasi maupun untuk mengetahui porositas batuan.

II.3.3.2.1. Prinsip peralatan Microspherically Focused Log

Elektroda ini terbawa pada bantalan karet yang kuat dan menekan pada formasi dengan bantuan lengan bantalan dan per (spring) yang dirancang untuk mengeliminir efek dari lumpur. Bila jangkauan dari peralatan tidak menempel pada dinding lubang bor maka peralatan ini akan menyatakan resistivitas dari lumpur pemboran, sehingga perlu mengoreksi posisi bantalan agar benar-benar menempel pada dinding lubang bor (menempel ke formasi).

II.3.3.2.2. Jangkauan pengukuran microresistivity

Pengukuran microresistivity akan sangat tergantung kepada: - ketebalan daripada mud-cake.
- diameter dari lapisan invasi.
Untuk jelasnya harap dilihat skema dibawah ini:

Keterangan dari gambar di atas adalah :

a. Mud-cake yang tipis : invasi fitrat luas, pengukuran Rxo bagus.

b. Mud-cake yang tebal : hasil pengukuran mendapatkan pengaruh kuat dari mud-cake.

c. invasi yang luas : menghasilkan Rxo yang bagus.

d. invasi yang dangkal : peralatan mengukur Rt daripada Rxo.

Pada contoh atau skema a, besarnya jangkauan daripada pendeteksian sangat diperlukan dengan maksud memperkecil efek dari mud-cake yang tebal. Pada contoh d, merupakan hal yang sebaliknya diperlukan pendeteksian yang mempunyai jangkauan rendah (kecil), agar supaya hasil pengukuran tidak mendapatkan harga Rt.
Pada keadaan ini, 3 perbedaan type dari peralatan microresistivity yang masing-masing mempunyai jangkauan pengukuran yang berbeda. Diperoleh dengan menggunakan variasi dalam pengaturan letak elektroda dan jarak antaranya ternyata sangat berpengaruh terhadap hasil pengukuran.

Ketiga peralatan tersebut dinamakan:
- MLL = micro laterolog
- PML = proximity microlog
- MSFL = micro sperical focus log

dimana kemampuan kerja optimum ketiga peralatan tersebut dapat digambarkan dan diperinci sebagai berikut:

Keterangan : a. Very shallow investigation (MLL)

mud-cake dapat kurang dari 3/8"
\(\phi \) invasi minimum 15 atau lebih, sangat dipengaruhi oleh keadaan lubang.

b. Relatively large investigation (PML).
mud-cake maximum 1 atau kurang,
\(\phi \) invasi minimum 40 atau lebih, cenderung dapat dipakai pada lubang dengan keadaan baik maupun tidak.

c. Moderate investigation (MSFL).
mud-cake sampai setebal 3/4",
\(\phi \) invasi tidak dapat kurang dari 15 menghasilkan harga Rxo lebih baik dibandingkan dengan MLL dan PML.

II.3.4. Formation Density Compensated Log

Log Densitas terutama digunakan untuk menentukan kesarangan (porositas) batuan. Prinsip kerja alat ini, pada hakekatnya adalah dengan memancarkan sinar-sinar gamma ke dalam formasi batuan dari sumber radioaktif. Sinar gamma ini akan berinteraksi dengan elektron-elektron yang terdapat dalam formasi batuan. Sinar gamma yang menumbuk elektron akan mengakibatkan terjadinya penguraian yang akan menghasilkan sejumlah energi dan intensitas penguraian sinar gamma ini akan tercatat pada detektor dan terbaca di permukaan. Intensitas penguraian tersebut ternyata merupakan fungsi dari densitas elektron dalam batuan, sehingga makin besar densitas elektronnya berarti makin besar pula kemungkinan akan terjadinya penumbukan oleh sinar gamma dan
makin besar pula intensitas penguraiannya.

Densitas elektron dalam material penyusun batuan adalah sebanding dengan densitas total batuan tersebut yang tercatat pada log. Sedang kesarangan dari batuan sendiri adalah merupakan fungsi dari densitas matrik batuan \((\rho_m)\) dan fluida \((\rho_f)\) yang terkandung di dalam batuan tersebut.

Untuk material yang berkomposisi tunggal densitas elektronnya \((\rho_e)\) akan berhubungan dengan densitas total \((\rho_b)\) dalam bentuk persamaan:

\[
\rho_e = \rho_b \left(2 \frac{\phi}{\rho_m} - 1\right)
\]

Densitas total batuan yang tercatat pada log merupakan fungsi dari densitas rata-rata material penyusun batuan \((\rho_m)\) dan fluida \((\rho_f)\) yang terkandung dalam batuan, maka hubungan dapat dinyatakan dengan persamaan (Schlumberger):

\[
\rho_b = \rho_f \phi + \rho_m (1 - \phi)
\]

\[
\rho_b = \rho_m + \phi (\rho_f - \rho_m)
\]

\[
\phi = \frac{\rho_m - \rho_b}{\rho_m - \rho_f}
\]

dimana, \(\phi\) = kesarangan atau porositas.

Harga \(\rho_m\) dan harga \(\rho_f\) didapatkan dari hasil analisa inti bor.

Sebagai contoh beberapa harga \(\rho_m\) (dalam gram / cc):

<table>
<thead>
<tr>
<th>Batu pasir</th>
<th>2,65</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batu gamping</td>
<td>2,71</td>
</tr>
<tr>
<td>Dolomit</td>
<td>2,87</td>
</tr>
<tr>
<td>Anhidrit</td>
<td>2,95</td>
</tr>
<tr>
<td>Batu bara</td>
<td>1 - 1,8</td>
</tr>
</tbody>
</table>
Gambar 12, Skema alat log Densitas

(FIRSON, S.J., 1963)

Untuk menghitung harga porositas batuan berdasarkan harga p_b yang didapat dari harga log Densitas, selain dengan menggunakan persamaan dapat juga dengan menggunakan chart dari schlumberger.

II.3.5. Compensated Neutron Log

Log Neutron yang digunakan untuk menentukan harga porositas, pada hakekatnya adalah mendeteksi banyak sedikitnya kandungan atom hidrokarbon yang terdapat di dalam formasi batuan.

Pada prinsipnya cara kerja dari alat ini adalah dengan memancarkan partikel-partikel neutron secara cepat dari suatu sumber radioaktif ke dalam formasi batuan.
Gambar 13. Skema alat log neutron

(SCHLUMBERGER, 1982)

Neutron merupakan partikel atom yang tidak bermuatan dan mempunyai jumlah massa yang sama dengan massa atom hidrogen. Partikel-partikel neutron ini kemudian akan menumbuk pada atom-atom dari material yang ada didalam formasi batuan, sehingga menyebabkan partikel neutron tersebut kehilangan sebagian energinya dan menyebabkan kecepatannya menjadi diperlambat. Ternyata hilangnya energi yang terbesar akan terjadi ketika partikel neutron bertemu dengan atom hidrogen. Kemudian partikel neutron yang telah kehilangan sebagian energinya itu akan dipantulkan kembali dan diterima oleh detektor dan terekam dipermukaan. Sehingga dengan mengetahui banyak sedikitnya kandungan fluida (air atau hidrokarbon) maka akan dapat diketahui besarnya
porositas dari batuan.

Log Neutron dalam perakamannya langsung menunjukkan harga porositas batuan dengan menggunakan standart matrik batu gamping, sehingga untuk batuan selain batugamping harga porositasnya perlu dikoreksi. Untuk menentukan harga porositas dari log Neutron dipakai chart dari Schlumberger.

II.3.3.5.1. Prinsip peralatan Log Neutron

Pendeteksian dapat menjadi kuat dan dapat menangkap tenaga kuat dari gamma-ray. Hal-hal di atas tergantung pada tipe dari peralatan neutron logging dimana penerimaan gamma-ray atau neutron sama-sama dideteksi oleh alat yang terdapat pada peralatan logging (sonde).

Dengan mengukur jumlah partikel neutron yang ditangkap oleh detektor maka dapat ditentukan harga daripada porositas

2.3.6. Sonik Log

Log Sonik adalah merupakan log porositas yang pengukurannya didasarkan pada cepat rambat gelombang suara kompresional pada setiap satu satuan jarak media formasi. Log Sonik modern sering dipakai adalah jenis Bare Hole Compensated Log (BHC). Log BHC ini mampu menghilangkan pengaruh ketidaketeraturan lubang bor.

Peralatan log BHC terdiri atas 2 buah pemancar (transmitter) dan 4 buah penerima (recorder, R) yang disusun secara seri. Prinsip kerja alat ini adalah memancarkan gelombang suara dimana getarannya akan merambat melalui formasi batuan. Secara bergantian penerima akan merekam waktu lintas gelombang suara tersebut sebagai interval transit time (Δt). Harga Δt akan sangat bergantung pada jenis batuan dan porositasnya. Harga Δt untuk beberapa jenis batuan sudah diketahui, maka harga porositas batuan dapat ditentukan melalui rumus (Schlumberger,LOG interpretation):

$$\phi_{sonik} = \frac{\Delta t_{log} - \Delta t_{m}}{\Delta t_f - \Delta t_{m}}$$

ϕ_{sonik} adalah porositas dari log sonik.

Δt_{log} adalah interval transit time yang terbaca pada kurva log sonik.
Δt_m adalah harga interval transit time untuk matrik batuan yang sudah diketahui.

Δt_f adalah interval transit time untuk fluida formasi dimana harganya sudah diketahui yaitu 189 μsec / ft.

Untuk mendapatkan harga porositas dari pembacaan log Sonik selain menggunakan persamaan diatas dapat juga menggunakan chart dari Schlumberger. Dalam penelitian ini log Sonik tidak dipakai secara khusus karena untuk mendapatkan harga porositas batuan sudah dipakai log Densitas dan log Neutron.

Skema peralatan logging Sonik (Schlumberger).

![Diagram of Sonik Logging](image)