BAB II
TEORI PENUNJANG

2.1 Gelombang Longitudinal Berjalan

Tinjaulah transmisi gelombang longitudinal didalam sebuah tabung.

Gambar 1
Gelombang bunyi yang dihasilkan didalam sebuah tabung oleh sebuah penghisap yang berosilasi.

Sewaktu penghisap didorong ke depan, setiap elemen fluida yang kecil berosilasi di sekitar kedudukan kesetimbangannya. Pergeseran adalah kekanan atau ke kiri sepanjang arah x dari perjalanan gelombang. Pergeseran setiap elemen volume dari kedudukan kesetimbangannya di x dinyatakan dengan huruf y.

Maka persamaan sebuah gelombang longitudinal yang berjalan dapat dituliskan sebagai

\[ Y = A \sin \omega t \]  

2-1
Jarak antara perapatan dan perenggangan yang berdekatan disebut panjang gelombang dan ditandai dengan \( \lambda \). Karena bentuk gelombang yang merambat dengan kecepatan tetap \( c \), menempuh jarak satu panjang gelombang dalam selang waktu satu periode, maka \( c = f \lambda \). \[2-2\]

2.2 Rumus Matematik Gelombang Berjalan

Misalkan suatu gelombang merambat dari kiri ke kanan dalam suatu medium. kita bandingkan dengan gerak partikel yang lain di sebelah kanan partikel pertama. Ternyata cara gerak partikel tersebut adalah sama, tetapi sesudah suatu selang waktu yang lama. Misalkan perpindahan sebuah partikel di titik pangkal \( (x = 0) \) ditentukan berdasarkan \( Y = A \sin \omega t \). persamaan \((2-1)\). 

Perpindahan sebuah partikel disebelah kanan titik pangkal ketinggalan dari perpindahan partikel di titik pangkal sebesar sudut \( \phi \). Artinya

\[ Y = A \sin (\omega t - \phi) \]  \[2-3\]

Sudut ketinggian \( \phi \) proporsional dengan jarak partikel itu dari titik pangkal, atau dengan koordinat \( x \)-nya :

\[ \phi = kx \]  \[2-4\]

disini \( k \) dinamakan konstanta rambatan. Jadi untuk partikel seperti itu

\[ Y = A \sin (\omega t - kx) \]  \[2-5\]

Sebuah partikel pada jarak satu panjang gelombang dari titik pangkal bergetar "sederap" dengan partikel di titik pangkal. jadi partikel tersebut akan ketinggalan dengan
sudut $\phi = 2\pi$. Dengan mengambil $x = \lambda$ dan $\phi = 2\pi$ kita peroleh

$$k = \frac{2\pi}{\lambda}$$  

Y merupakan fungsi dari dua variabel, $x$ dan $t$ yang tidak saling bergantungan. Kecepatan gelombang $c = f \lambda$, dan $\omega = 2\pi f$ dan $k = \frac{2\pi}{\lambda}$, kita dapatkan

$$c = f \lambda = \frac{\omega}{2\pi} \cdot \frac{2\pi}{k} = \frac{\omega}{k}$$

Untuk gelombang sinus yang merambat longitudinal yang ditentukan berdasarkan persamaan, yaitu

$$Y = A \sin(\omega t + kx)$$

kecepatan partikel $v$ di setiap titik dimana $x$ mempunyai harga tetap yang diperoleh dengan mengambil turunan $Y$ terhadap waktu $t$, dengan membuat $x$ konstan. Turunan seperti ini disebut turunan partial. Jadi,

$$v = \frac{\partial Y}{\partial t} = A \cos(\omega t + kx)$$

 percepatan partikel $a$ dapat diperoleh dengan mendiferensiasi secara partial kedua kalinya. atau

$$a = \frac{\partial^2 Y}{\partial t^2} = -\omega^2 A \sin(\omega t + kx)$$

tetapi, ada turunan parsial orde dua lainnya dari perpindahan partikel, yaitu terhadap $x$ dengan membuat $t$ konstan. Jadi,

$$\frac{\partial^2 Y}{\partial x^2} = -k^2 A \sin(\omega t + kx)$$

Oleh karena itu berdasarkan dua persamaan terakhir, maka

$$\frac{\partial^2 Y}{\partial t^2} = \frac{\omega^2}{k^2} = c^2$$

karena $c = \omega / k$. Persamaan diferensial partial

$$\frac{\partial^2 Y}{\partial t^2} = c^2 \frac{\partial^2 Y}{\partial x^2}$$
2.3 Menghitung Kecepatan Pulsa

Gambar 2
Sistem Pegas Massa

Ketika sebuah gelombang terbentuk, masing-masing massa menyimang dari kedudukan setimbangnya. Kita tunjukkan dengan mengganti massa pada titik keseimbangan-nya pada x dengan \( Y(x) \), \( x + \Delta x \) dengan \( Y(x+\Delta x) \) dan \( x - \Delta x \) dengan \( Y(x-\Delta x) \). Gaya pegas yang ditujukan pada massa ke sebelah kiri pada saat x mengalami perubahan panjang sebesar \( Y(x) - Y(x-\Delta x) \) adalah

\[
F_\text{-} = k(Y(x)-Y(x-\Delta x))
\]

Gaya pegas yang ditujukan pada massa ke sebelah kanan sebesar

\[
F_\text{+} = k(Y(x+\Delta x)-Y(x))
\]

Gaya neto yang beraksi pada massa adalah

\[
F = F_\text{+} - F_\text{-} = k(Y(x+\Delta x)+Y(x-\Delta x)-2Y(x))
\]

Selanjutnya kita bisa menulis persamaan gerak untuk massa
dengan deret taylor kita dapatkan suku sebelah kanan

\[ k \frac{\partial^2 Y}{\partial x^2} (\Delta x)^2 \]

sehingga persamaan menjadi

\[ m \frac{\partial^2 Y}{\partial t^2} = k (\Delta x)^2 \frac{\partial^2 Y}{2x^2} \]

\[ \frac{\partial^2 Y}{\partial t^2} = \frac{k}{m} (\Delta x)^2 \frac{\partial^2 Y}{\partial x^2} \]

sehingga kita dapatkan

\[ c^2 = \frac{k}{m} (\Delta x)^2 \]

\[ c = \sqrt{\frac{k}{m} (\Delta x)^2} \]

\[ c = \sqrt{\frac{k}{m} \Delta x} \]

k \( \Delta x \) adalah modulus elastis dan dilambangkan K

m/\( \Delta x \) adalah massa per satuan panjang dilambangkan jadi

\[ c = \sqrt{\frac{K}{m}} \]

\[ c = \sqrt{\frac{\text{modulus elastis}}{\text{rapat massa}}} \]
2.3.1 Kecepatan Gelombang Bunyi di dalam Gas

Dari persamaan 2-24 yang merupakan persamaan umum kecepatan gelombang longitudional

\[
\frac{c}{\text{modulus elastis}} = \sqrt{\frac{\text{rapat massa}}{\Delta V/V}}
\]

Modulus elastis pada gas didefinisikan sebagai perbandingan perubahan tekanan (\(\Delta P\)), kepada bagian perubahan volume yang dihasilkan, yakni \(\Delta V/V\)

Jadi \(B = -\frac{\Delta P}{\Delta V/V}\), sehingga \(c = \sqrt{\frac{B}{p}}\) 2-25

Jika gas mula-mula ada pada tekanan \(P\) dan volume \(V\), maka hubungan dari persamaan keadaan adalah

\[
P_o V_o ^{\gamma} = c
\]

\[
\Delta P = \gamma P_o \frac{\Delta V}{V_o} - 1 = 0
\]

\[
\Delta P = -\gamma P_o \frac{\Delta V}{V_o}
\]

\[
\gamma P_o = -\frac{\Delta P}{\Delta V/V_o}
\]

Jadi \(B = \gamma P_o\)

Maka didapat rumus \(c = \sqrt{\frac{\gamma P_o}{P_o}}\) 2-26

Untuk gas sempurna

\[
P_o V_o = NRT \quad \text{dan} \quad \rho_o = \frac{m}{V}
\]

\[
\frac{P_o}{\rho_o} = \frac{N}{m} \quad \text{RT}
\]

\[
\rho_o = \frac{m}{V}
\]
\[
\frac{RT}{M} \quad \text{M} = \frac{m}{N} \quad \text{(gr/mole)}
\]

Jadi \( c = \sqrt{\frac{\gamma RT}{M}} \)

merupakan persamaan kecepatan gelombang bunyi di dalam gas.

\( \gamma \) = perbandingan panas jenis

R = konstanta universal gas

M = berat molekul

T = suhu dalam kalvin

<table>
<thead>
<tr>
<th>Medium</th>
<th>Temperatur (^\circ\text{C})</th>
<th>Laju (\text{m/s})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Udara</td>
<td>0</td>
<td>331.3</td>
</tr>
<tr>
<td>Hidrogen</td>
<td>0</td>
<td>1.286</td>
</tr>
<tr>
<td>Oksigen</td>
<td>0</td>
<td>317.2</td>
</tr>
<tr>
<td>Air</td>
<td>15</td>
<td>1.450</td>
</tr>
<tr>
<td>Timah</td>
<td>20</td>
<td>1.230</td>
</tr>
<tr>
<td>Aluminium</td>
<td>20</td>
<td>5.100</td>
</tr>
<tr>
<td>Tembaga</td>
<td>20</td>
<td>3.500</td>
</tr>
<tr>
<td>Besi</td>
<td>20</td>
<td>5.130</td>
</tr>
</tbody>
</table>

2.4 Energi Yang Dibawa Gelombang

Benda yang bergerak secara harmonis memiliki juga energi kinetik dan energi potensial, jumlah dari kedua energi inilah yang disebut sebagai energi mekanis. Kita juga telah mengetahui bahwa gelombang adalah getaran yang menjalar, karena getaran memiliki energi maka dalam menjalar gelombang memindahkan energi atau dengan perkataan lain, gelombang memiliki energi.
Kecepatan sebuah partikel dari gelombang dirumuskan sebagai
\[ v = \frac{\partial Y}{\partial t} \]
dan energi kinetiknya adalah:
\[ E_k = \frac{1}{2} m v^2 = \frac{1}{2} m (\frac{\partial Y}{\partial t})^2 \]
energi potensial dalam pegas yang ditujukan pada massa kesebelah kanan
\[ E_p = \frac{1}{2} k(\Delta x)^2 (\frac{\partial Y}{\partial x})^2 \]
dimana
\[ \frac{\partial Y}{\partial t} = -c \frac{\partial Y}{\partial x}, X = x-ct \]
dan
\[ \frac{\partial Y}{\partial x} = \frac{\partial Y}{\partial X} \]
kita dapatkan
\[ E_k = \frac{1}{2} mc^2 (\frac{\partial Y}{\partial X})^2 \]
\[ E_p = \frac{1}{2} k\Delta x^2 (\frac{\partial Y}{\partial X})^2 \]
mengingat persamaan 2-20
\[ c^2 = k\Delta x^2/m \]
Kita dapat menyimpulkan bahwa dalam gelombang berjalan energi kinetik dan energi potensial adalah sama di segala tempat dan di setiap waktu.
Jadi total energinya adalah
\[ \text{Energi gelombang } E = 2x \frac{1}{2} mc^2 (\frac{\partial Y}{\partial X})^2 \]
\[ = mc^2 (\frac{\partial Y}{\partial X})^2 \]
\[ \text{Energi gelombang per satuan panjang } = \rho c^2 (\frac{\partial Y}{\partial X})^2 \]
Kita telah tahu persamaan umum gelombang adalah

\[ Y = A \sin(\omega t - kx) \]  
(persamaan 2-5)

dimana \( \omega / k = c = \sqrt{\frac{k}{\rho}} \)  
(persamaan 2-23)

jadi

\[ \frac{d}{dx} A \sin(k(ct - x)) = A \frac{d}{dx} \sin - kx \]

\[ = -kA \cos(k(ct - x)) \]  
2-34

sehingga didapatkan energi gelombang per satuan panjang

\[ = \rho c^2 k^2 A^2 \cos^2(k(ct - x)) \]  
2-35

dan rata-rata energi gelombang per satuan panjang

\[ = \frac{1}{2} \rho c \omega^2 A^2 \]  
(J/m)  
2-36

jadi daya (power) yang dipindahkan atau dibawa rata-rata sebesar

\[ P = \frac{1}{2} c \rho \omega^2 A^2 \]  
(J/sec)  
2-37

---

**Gambar 3**

Rata-rata energi gelombang per satuan panjang hanya setengah dari harga puncaknya.

2.5 Prinsip Superposisi

Efek keseluruhan dari beberapa gerak gelombang \( \psi_1, \psi_2, \ldots, \psi_n \) yang berlangsung secara serempak pada
suatu medium tertentu dapat dinyatakan sebagai suatu kombinasi linier dari beberapa komponen gerak gelombang, yang berlangsung secara serempak pada medium yang bersangkutan. Salah satu contoh superposisi gelombang yang paling sederhana adalah peristiwa yang terjadi pada medium yang terbatas dengan medium lain. Dalam hal ini umumnya akan terjadi superposisi gelombang masuk dan gelombang pantul.

Superposisinya dapat dituliskan sebagai berikut.

\[ Y(x,t) = Y_1(x,t) + Y_2(x,t) \]
\[ = A \sin(k_1x - \omega_1t) + A \sin(k_2x - \omega_2t) \]
\[ = 2A \sin\left(\frac{(k_1 + k_2)x - (\omega_1 + \omega_2)t}{2}\right) \cos\left(\frac{(k_1 - k_2)x - (\omega_1 - \omega_2)t}{2}\right) \]
\[ = 2A \cos(k_mx - \omega_mt) \sin(k_rx - \omega_rt) \]

2-38

dengan definisi

\[ \omega_m = \frac{1}{2} (\omega_1 - \omega_2) : \text{frekuensi sudut modulasi} \]
\[ k_m = \frac{1}{2} (k_1 - k_2) : \text{bilangan gelombang modulasi} \]
\[ \omega_r = \frac{1}{2} (\omega_1 + \omega_2) : \text{frekuensi sudut rata-rata} \]
\[ k_r = \frac{1}{2} (k_1 + k_2) : \text{bilangan gelombang rata-rata} \]

Uraian di atas menunjukkan bahwa hasil superposisi dapat pula dipandang sebagai suatu peristiwa modulasi. Secara umum dapat dikatakan bahwa untuk gelombang suara dapat dibedakan menjadi dua kasus sebagai berikut:
a) \( \omega_m > 6\% \omega_r \): akan terdengar dua nada suara berbeda
masing-masing dengan frekuensi
\[ \nu_1 = \frac{\omega_1}{2\pi}, \quad \nu_2 = \frac{\omega_2}{2\pi} \]
b) \( \omega_m > 6\% \omega_r \): akan terdengar peristiwa pelayangan
dengan nada pokok \( \nu_r = \frac{\omega_r}{2\pi} \)
dan frekuensi pelayangan \( \nu_m = \frac{\omega_m}{2\pi} \).
Dengan kata lain, gelombang \( Y(x,t) \) merupakan hasil modulasi amplitudo dari
gelombang.
\[ A \sin(k_rx - \omega_r t) \]
dengan amplitudo
\[ 2A \cos(k_mx - \omega_m t) \]
Penguatan terjadi jika selisih panjang
gelombang \( 0, \lambda, 2\lambda, 3\lambda, \ldots \).
Pelemahan terjadi jika selisih panjang
gelombang \( \frac{1}{2}\lambda, \frac{1}{2}\lambda, \frac{2}{2}\lambda, \ldots \).  

2.6 Pemantulan gelombang

Ditinjau peristiwa yang dapat terjadi pada batas antara dua medium gelombang (dalam hal ini dawai misalnya) yang berbeda sifat dan keadaannya.
Misalkan tali/dawai bagian kiri (I) berawal pada \( x = -\infty \)
dan bersambung dengan tali/dawai kedua pada \( x = 0 \). Dawai kedua (II) memanjang ke sebelah kanan sampai \( x = +\infty \).
Maka perumusan diatas terdiri dari persamaan diferensial:
\[ \frac{\partial^2 y_I}{\partial x^2} - \frac{1}{v_I^2} \frac{\partial^2 y_I}{\partial t^2} = 0 \quad , \quad x < 0 \]  
\[ 2-39 \]
dilengkapi dengan syarat-syarat batas berupa syarat-syarat kontinuitas:

1) \[ Y_1 = Y_2 \] pada \( x = 0 \) dan setiap \( t \)

2) \[ \frac{\partial Y_1}{\partial t} = \frac{\partial Y_2}{\partial t} \]

3) \[ T_0 \frac{\partial Y_1}{\partial x} = T_0 \frac{\partial Y_2}{\partial x} \]

\[ \omega_1 = \omega_2 = \omega \]

Solusi paling umum untuk masing-masing daerah berbentuk sebagai berikut:

Medium I: \( Y_I = Y_m + Y_r = \) gelombang masuk + gelombang pantul (refleksi)

\[ = A_m \cos(\omega t - k_1 x) + A_r \cos(\omega t + k_1 x) \]

\[ k_1 = \frac{\omega}{V_1} \]

Medium II: \( Y_{II} = Y_t = \) gelombang yang diteruskan

\[ = A_t \cos(\omega t - k_2 x) \]

\[ k_2 = \frac{\omega}{V_2} \]

Penerapan syarat-syarat batas (1)

\( Y_I = Y_{II}, \) pada \( x = 0 \)
menghasilkan

\[ A_m \cos(\omega t) + A_r \cos(\omega t) = A_t \cos(\omega t) \]
\[ A_m + A_r = A_t \]
\[ 1 + A_r/A_m = A_t/A_m \]
\[ 1 + r = t \]  \hspace{1cm} 2-41

dengan definisi:
\[ r = \frac{A_r}{A_m} \quad : \text{koefisien refleksi} \]
\[ t = \frac{A_t}{A_m} \quad : \text{koefisien transmisi} \]

Syarat batas (3)
\[ (\frac{\partial Y_I}{\partial x}) = (\frac{\partial Y_{II}}{\partial x}) \text{ pada } x = 0 \]

menghasilkan
\[ A_m k_1 \sin(\omega t) - A_r k_1 \sin(\omega t) = A_t k_2 \sin(\omega t) \]
\[ (A_m - A_r)k_1 = A_t k_2 \]
\[ (1 - r) = t(k_2/k_1) \]
Dari kedua persamaan diatas diperoleh
\[ t = \frac{2k_1}{k_1 + k_2} \quad \text{selalu} > 0 \]  \hspace{1cm} 2-42

dan selanjutnya
\[ r = \frac{k_1 - k_2}{k_1 + k_2} \]  \hspace{1cm} 2-43

2.7 Intensitas Gelombang Bunyi

Energi yang dipindahkan oleh gelombang biasanya dinyatakan dalam besaran Intensitas gelombang yang didefinisikan sebagai energi persatuan waktu yang menembus
bidang seluas satu satuan yang tegak lurus pada arah rambat bunyi yaitu

\[ I = \frac{E}{t} \quad \text{2-44} \]

Energi persatuan waktu adalah besaran daya (P), oleh karena itu persamaan di atas dapat dituliskan juga sebagai

\[ I = \frac{P}{A} \quad \text{2-45} \]

dengan

\[ P = \text{daya pada gelombang (watt)} \]
\[ A = \text{luas bidang (m}^2\text{)} \]
\[ I = \text{Intensitas gelombang (watt/m}^2\text{)} \]

Gambar 4

Muka gelombang yang berjalan keluar secara radial dari sumber bunyi.

Bila bunyi dianggap sebagai titik, maka bunyi akan disebar merata ke seluruh ruang sehingga muka gelombang bunyi akan berbentuk bola, seperti ditunjukkan pada gambar di atas. Sedangkan luas bola dirumuskan sebagai
A = 4\pi r^2,
dengan r ialah jarak antara pendengar dan sumber bunyi.
Dengan demikian bunyi pada jarak r dari sumber bunyi adalah

\[ I = \frac{P}{4\pi r^2} \quad \text{2-46} \]

Dari persamaan 2-46, disimpulkan bahwa

Intensitas bunyi pada suatu titik yang berjarak r dari sumber bunyi adalah berbanding terbalik dengan kuadrat jaraknya

\[ I \propto \frac{1}{r^2} \]

2.6 Tingkat Tekanan Bunyi

Dari segi pandang geometri yang dirambatkan gelombang adalah bentuk gelombang. Tetapi dari segi fisika yang dirambatkan adalah sesuai yang lain, yaitu energi. Intensitas I gelombang yang merambat didefinisikan sebagai jumlah rata-rata energi yang dibawa persatuan waktu oleh gelombang persatuan luas permukaan yang tegak lurus pada arah rambatan. Singkatnya, Intensitas itu ialah daya rata-rata yang dibawa per satuan luas.

Jadi

\[ I = \frac{k c \rho \omega^2 A^2}{(W/m^2)} \quad \text{2-47} \]

atau

\[ I = \frac{P^2}{\rho c} \quad (W/m^2) \quad \text{2-48} \]

Harga suatu bunyi ditentukan dengan tekanan bunyi. Tekanan bunyi dengan frekuensi 1000 Hz pada ambang
pendengaran sebesar \( P_0 = 20\mu P_a = 2 \cdot 10^{-5} \text{N/m}^2 \).

Bunyi yang keras dekat ambang sakit memiliki tekanan bunyi sebesar 100 \( P_a \).

Telinga manusia mempunyai sensitivitas logaritmik, jadi perlu menggunakan Intensitas logaritmik atau \( I^2 \) sebagai kuantitas pengukuran.

Definisi kuantitas ini sebagai berikut:

\[
L_p = 10 \log \frac{P^2}{P_0^2} \quad \text{dB} \tag{2-49}
\]

\[
L_p = 20 \log \frac{P}{P_0} \quad \text{dB} \tag{2-50}
\]

\( P_0 = 20\mu P_a \), tekanan bunyi reference

\( P = \) tekanan bunyi yang terukur.

Kuantitas \( L_p \) disebut tingkat tekanan bunyi, dinyatakan dalam desibel.

Karena berhubungan dengan Intensitas bunyi maka definisi tingkat Intensitas

\[
L_I = 10 \log \frac{I}{I_0} \quad \text{dB} \tag{2-51}
\]

\( I_0 = 10^{-12} \text{Watt/m}^2 \), Intensitas acuan

2.9 Tingkat Bunyi Equivalent

Bervariasi hanya tingkat-tingkat bunyi membawa kesejumalah besar perhitungan. Biasanya tingkatan bunyi berubah-ubah terhadap waktu, ini berarti bahwa tingkat sesaat merupakan penggambaran yang kurang mencukupi. Untuk mendapatkan jumlah dari tingkat rata-rata

\[
L_{av} = \frac{1}{N} \sum L_i \quad \text{dB} \tag{2-52}
\]
Namun, dalam banyak hal, adalah perlu untuk merata-rata lagi dari bunyi-bunyi, dalam hal ini dibutuhkan TINGKAT RATA-RATA ENERGI. Rumus berikut dapat dipahami sebagai aritmatika rata-rata antilog dari tingkat sesaat atau kejadian tunggal. Jumlah ini disebut TINGKAT BUNYI KONSTAN YANG EQUIVALEN (\(L_{eq}\)).

\[
L_{eq} = 10 \log \frac{1}{N} \sum L_i \quad \text{dB} \\
L_{eq} = 10 \log \frac{1}{T} \sum \text{ti} \quad \text{dB}
\]

dimana

\(n\) = jumlah kejadian-kejadian dengan tingkat \(L_i\) \\
\(N\) = jumlah total kejadian-kejadian \\
\(ti\) = lamanya waktu (durasi) tingkat \(L_i\) \\
\(T\) = total rujukan waktu

\(L_{eq}\) adalah energi rata-rata tingkat bunyi yang dirata-rata diatas sejumlah pengukuran-pengukuran atau kejadian-kejadian atau diatas pengukuran berkala (waktu rujukan). Hal tersebut dapat dipertimbangkan sebagai tingkat kontinu yang memiliki total energi sama sebagai flutuasi bunyi nyata yang diukur pada periode waktu yang sama.

2.10 Instrumentasi Pengukur

SOUND LEVEL METER

Sekitar tahun 1926, Prof. Barkhausen di Jerman menjelaskan sound level meter pertama kali yang terdiri dari generator noise kecil yang lewat attenuator dapat memancarkan noise lewat telepon. Pengukuran bisa dilakukan dengan mengatur attenuator, sehingga noise dari telepon
yang didengar telinga tepat sama kerasnya dengan noise yang diukur. Sampai sekarang masalah pengukuran atau penghitungan kuantitas kegaduhan belum menemukan penyele-
saian. Alat Barkhausen mempunyai manfaat penting, hasilnya mirip respon seseorang karena telinga manusia digunakan sebagai indikator, sehingga bobot frekuensi waktu rata-
rata respon logaritmik sangat cocok.

Usaha selanjutnya untuk mengukur kerasnya bunyi dibuat dalam dekade berikut dalam bentuk level meter bunyi obyektif, yang mempertimbangkan sifat telinga dan mekanisme pendengaran. Dalam instrumen ini tekanan bunyi ditransformasikan menjadi tegangan oleh mikropon, jaringan berbobot memandang respon frekuensi telinga membentuk spektrum kebisingan dan rectifier Rms dengan konstanta waktu tertentu yang disambungkan ke meter dengan skala logaritmik. Gambar berikut memperlihatkan diagram blok sound level meter modern

Gambar 5
Diagram Blok Sound Level Meter Modern
Untuk memenuhi syarat pengukuran situasi tertentu ada berbagai bentuk mikropon yang ada. Tergantung jangkauan frekuensi (0,01 Hz - 100 Hz) dan sound level (15 - 60 dB), maka tipe mikropon yang cocok harus dipilih. Ada mikropon dengan respon free field, pressure respon, dan respon field difusi, meskipun untuk pengukuran proteksi lingkungan free field harus digunakan.

Mikropon kondusor merupakan transducer mengubah energi mekanik ke bentuk listrik. Konversi dipengaruhi oleh perubahan induksi secara mekanik pada kapasitas listrik antara dua plat penghantar yang dipisahkan insulator, dan mendeteksi perubahan kapasitas secara listrik. Metode konvensional dengan memasang mikropon dengan resistansi input yang besar dari suatu prampli fier (merupakan bagian mikropon dan harus ditempatkan didekat capsule) dan mengukur tegangan resistan. Cara lain menggunakan perubahan resistan terhadap frekuensi yang modulasi frekuensi pembawa deteksi dilakukan oleh demodulator konvensional, metode ini digunakan untuk mengukur bunyi berfrekuensi rendah.

Diperlukan pula mengkalibrasi sound level meter atau jika peralatan lain digunakan maka pengukuran total harus diperhatikan. Ada beberapa kalibrator dengan signal akustik dari loud speaker kecil atau dibuat dari piston mekanik (pistonphone) yang ada dengan menggabung langsung ke mikropon. Sound level meter biasa mencantumkan harga
level sesaat. Kebisingan sekitar tidak konstan dalam beberapa hal, fluktuasi level harus dirata-rata dalam beberapa hal dengan cara tertentu. Ini bisa dilakukan dengan klasifikasi atau dengan instrumen rata-rata khusus, contoh integrating sound level meter. Alat ini secara otomatis memberikan tingkatan bunyi kontinu yang sama $L_{eq}$, yang sering digunakan untuk menilai lingkungan dan kebisingan teknis. Kini integrating sound level meter menjadi sangat penting, karena murah, ringan, kecil dan mudah dibawa.

Sampai sekarang sound lever meter, sebagaimana integrating dibagi menjadi 4 bagian ketelitian. Toleransi maksimum banyaknya karakteristik ditentukan dalam standar modern dan pada umumnya pembacaan sound level meter harus dalam selang toleransi berikut

IEC 651 :

<table>
<thead>
<tr>
<th>Type 0</th>
<th>Type 1</th>
<th>Type 2</th>
<th>Type 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>± 0.4</td>
<td>± 0.7</td>
<td>± 1.0</td>
<td>± 1.5</td>
</tr>
</tbody>
</table>

Sound level meter type 0 untuk standard laboratorium, type 1 untuk penggunaan laboratorium dan untuk lapangan dimana lingkungan akustik mampu dispesifikasi dan atau dikendalikan. Ketelitian pengukuran dimungkinkan dengan instrumen tersebut, yang umumnya tak disadari pada kondisi biasa. Sound level type 2 sangat cocok untuk pemakaian lapangan. Type 3 untuk survey kebisingan lapangan.