BAB II
TINJAUAN PUSTAKA

A. Sistematika

Dalam dunia tumbuhan, tanaman jahe tercatat dalam sistematika sebagai berikut

Divisio : Spermatophyta
Sub Divisio : Angiospermae
Class : Monocotyledone
Ordo : Zingiberales
Familia : Zingiberaceae
Genus : Zingiber
Spesies : Zingiber officinale Rosc.
(Backer, 1995)

A. 1. Jahe (Zingiber officinale Rosc.)

Jahe sudah digunakan semenjak abad IX oleh orang-orang Eropa sebagai tanaman rempah-rempah yang dibutuhkan karena iklim dibenua ini sangat dingin (dibawah 0º C).
Tanaman ini diduga berasal dari daerah Asia dan India bagian selatan (Sumeru, 1995).

Pada umumnya jahe merupakan tanaman herba tropik semusim, tumbuh tegak dengan tinggi 40 - 50 cm. Batang semu, beralur, lunak, berasal dari kumpulan pelepah daun yang saling membungkus. Daun tunggal, bentuk lanset, tepi rata, ujung runcing, pangkal tumpul, warna hijau tua. Bunga majemuk, bentuk bulir, ujung runcing, panjang 3
- 5,5 cm, lebar 1,5-2 cm, tangkai panjang ± 2 cm, warna hijau merah, kelopak bentuk tabung, bergigi 3, mahkota bentuk corong, panjang 2-2,5 cm, warna ungu. Buah kotak, bulat panjang,. Biji bulat, hitam. Akar serabut, warna putih kotor (Backer, 1968).

Sekarang tanaman ini digunakan dalam bidang yang lebih luas, misal bahan penyedap masakan, campuran obat tradisional, bahan kosmetik, minuman serta gula-gula. Rimpang jahe digunakan untuk mengobati demam, batuk dan sakit perut seperti diare. Manfaat jahe dalam metabolisme tubuh antara lain meningkatkan nafsu makan, memperlancar pencernaan makanan, obat rematik, mencegah malaria dan antiracun (Sumeru, 1995).

Jahe dipanen menjelang musim hujan setelah berumur 6-10 bulan. Adapun jenis-jenis jahe antara lain sebagai berikut :

1. Jahe putih besar, dengan ciri rimpangnya besar berwarna kuning/kuning muda dan seratnya sedikit lembut. Mengandung minyak atsiri 0,82 - 1,68% dari berat keringnya.

2. Jahe putih kecil, dengan cirinya rimpang agak pipih, kecil, berwarna putih, seratnya lembut dan aromanya tidak tajam. Mengandung minyak atsiri 1,5 - 3,3% dari berat keringnya.

Dari ketiga jenis tersebut paling banyak mengandung minyak atsiri dan paling tinggi nilai guna obat yang dikandungnya adalah jahe merah (Santoso, 1988).
Pemakaian jahe dengan dosis sekitar 0,5 gram - 1,2 gram atau sebagai infusa (larutan) sekitar 30 ml - 60 ml sangat baik sebagai obat sakit perut dan perangsang (stimulansia) (Kartasapoetra, 1988).

A.2. Kandungan Jahe

Perkiraan komposisi kimia jahe basah adalah air 80,8%; protein 2,3%; lemak 1%; serat 2,4%; karbohidrat 12,3%; abu 1,2%. Rimpang jahe kering mengandung air 10%, minyak atsiri 0,5 - 5,5% yang terdiri zingeron, gingerol, etilmetil keton yaitu keton yang rasanya pedas sekali, zingiberin, borneol, kampen, sinear, folandren, pati 20 - 60%, damar, asam-asam organik (malat, oksalat), oleoresin (Heyne, 1987 dan Kartasapoetra, 1988).

A.3. Metabolit Sekunder

Metabolit sekunder adalah zat kimia bukan nutrisi yang berperan penting dalam proses kehidupan organisme dalam lingkungannya. Sifatnya spesifik pada setiap jenis/kelompok jenis dari organisme tertentu (Mursyidi, 1990).

A.4. Ekstrak

Ekstrak adalah sediaan kental/kering/cair yang dibuat dengan mencari simplisia nabati/hewani menurut cara yang cocok, diluar pengaruh cahaya matahari langsung.

Pembuatan ekstrak biasanya menggunakan pelarut air, eter, etanol ataupun pelarut nonpolar atau semipolar lainnya. Pencairan simplisia dengan pelarut dapat dilakukan dengan cara mazerasi, perkolasi atau penyeduhan dengan pendidihan. Pencairan dengan
pelarut air dan sejenis etanol dengan cara perkolasi atau maserasi. Pencairan dengan eter dilakukan dengan cara perkolasi sebab sifat eter mudah terbakar.

Maserasi dilakukan dengan cara menyuling dan menguapkan maserat pada tekanan rendah dan suhu yang tidak lebih dari 50° C hingga didapatkan konsistensi volume. Sedangkan perkolasi dengan cara perkolator dinitup dan dibiarkan paling cepat 24 jam, cairan diteteskan dan disuling, dan akhirnya diuapkan pada 50° C hingga didapatkan konsistensi volume (Anonim, 1995).

B. Tinjauan Tentang Bakteri Uji

B. 1. Staphylococcus aureus

Staphylococcus patogen sering menghemolisis darah, mengkoagulasi plasma serta menghasilkan berbagai enzim ekstraseluler dan toksin. Staphylococcus cepat menjadi resisten terhadap banyak zat antimikrobia sehingga menimbulkan masalah yang sulit (Jawetz, 1995).
Penyakit yang disebabkan oleh racun *Staphylococcus aureus* bersifat enterotoxemis. Racun-racun ini bersifat inflamasi pada perut dan saluran intestinal. Racun ini sifatnya berbeda tergantung konsentrasi serta jumlah makanan yang dikonsumsi.

Enterotoxemia staphylococcal adalah antigenik berat (Jorgensen, 1987). Beberapa penemuan laboratorium tes patogenik pada manusia dan hewan khususnya monyet, kucing dan kelinci yang diperlakukan dengan pakan yang dicampur filtrat dari media yang diisolasi dan ditumbuk menunjukkan reaksi yang positif dari racun staphylococcus yang ditandai dengan muntah-muntah (Longree, 1996).

B.2. Escherichia coli

Genus Escherichia berbentuk batang, dengan kisaran ukuran 1,1 – 1,5 μm terdapat tunggal atau berpasangan. Pada beberapa strain terdapat kapsula, bersifat kemoaototrof, punya organ respirasi dan dapat berfermentasi. Melakukan penguraian D-glukosa dan karbohidrat serta membentuk asam dan gas.

Bakteri *E. coli* hidup pada manusia dan binatang. Penentuan adanya *E. coli* pada air minim dipakai sebagai bukti pencemaran tinja manusia dan hewan.

Morfologinya berbentuk batang pendek berukuran 2,4μ x 0,4μm - 0,7μm, merupakan bakteri gram negatif, bergerak aktif dan tidak berspora. Sifat biakan dari bakteri ini aerob atau fakultatif aerob dan tumbuh pada pembenihan biasa, suhu optimum yaitu 37°C, pH mendekati netral yaitu 4-8 (Longree, 1996).
Reaksi biokimiawinya dapat meragikan laktosa, glukosa, sukrosa, manitol dengan membentuk asam dan gas. Daya tahan dari kuman ini dapat berbulan-bulan pada tanah dan dalam air, tapi dapat dimatikan dengan pemanasan 60\(^{\circ}\) C selama 20 menit, dan jika diberi klorin dalam kadar 0,5 – 1 ppm kuman ini peka terhadap streptomisin, tetrasiklin, furadantin, asam nolidiksat (Jawetz, 1996).

Ada tiga golongan *E. coli* yang berperan sebagai penyebab diare, yaitu:

1. **ETEC** (Entero Toksigenik *Escherichia coli*) yaitu *E. coli* yang dapat menghasilkan eksotoksin.
2. **EIEC** (Entero Invasif *Escherichia coli*) yang mempunyai daya invasif sehingga menimbulkan gejala penyakit seperti disentri.
3. **EPEC** (Entero Patogenik *Escherichia coli*) yaitu *E. coli* patogen yang penentuannya berdasarkan uji serologis. Hanya serotip tertentu saja yang berdasarkan pengalaman dapat menimbulkan penyakit (Fardiaz, 1983).

Eschericia coli mampu menghasilkan endotoksin dan eksotoksin. Endotoksin merupakan lipopolisakarida komplek dan terdapat didinding sel bakteri dan dilepaskan apabila sel mengalami lisis. Endotoksin menyebabkan demam, kenaikan permeabilitas dan penurunan pengembalian darah vena. Eksotoksin mampu merangsang keluarnya enzim adenilat siklase yang kemudian menaikkan produksi siklik adenosin monophospat pada mukosa usus halus (Fardiaz, 1983).
Enterotoksin *E. coli* (ETEC) mempengaruhi sistem transport ion-ion membran sel dan bekerja dengan aktivitas adenilat siklase kemudian terjadi perubahan ATP. EPEC menimbulkan penyakit pada manusia dan hewan dengan dua cara:

1. Dengan memproduksi enterotoksin.

2. Dengan menyerang sel-sel epitelium dari usus halus.

Strain *E. coli* yang memproduksi ETEC tidak bersifat invasif tapi toxsin yang dilepaskan mengakibatkan sekresi berlebihan dari elektrolit dan air ke saluran pencernaan. Strain EPEC dapat melakukan penetrasi pada sel-sel mukosa usus dan menimbulkan gejala infeksi seperti menggigil, demam, pusing, kejang perut dan diare. Diare yang ditimbulkan oleh strain EPEC yang tidak memproduksi toxsin biasanya lebih berat daripada yang ditimbulkan oleh strain ETEC (Winarno, 1983).

E. coli sering dibagi menurut serologi atau faktor virulensinya untuk identifikasi dan karakteristik strain patogenik secara epidemi. Tipe serologi lengkap terdiri O (somatik), K (kapsular), H (antigen). Tipe biokimia *E. coli* tidak sulit untuk dibedakan dari genus yang lain. *E. coli* menunjukkan reaksi negatif untuk karboksilasi lisin, dehidrasi arginin, dekarboksilasi ornitin, dan positif pada tes indol, dekarboksilasi lisin, D-glukosa, produksi gas, laktosa, D-manitol. Spesies lain dari genus Escherichia selain *E. coli*, adalah *E. fergusonis, E. hermonnis, E. vulneris* (Holt et al., 1994).

Kedua bakteri uji tersebut berbeda dalam penggolongannya, yaitu bakteri gram positif dan bakteri gram negatif. *Staphylococcus aureus* yang termasuk gram positif mempunyai kandungan peptidoglikan yang lebih tinggi dibanding bakteri gram negatif
sehingga kandungan lipidnya rendah, punya asam teikot yang berupa polisakarida dan mengandung ulangan rantai gliserol dan ribitol.

Sedang *E. coli* yang merupakan bakteri gram negatif punya membran luar yang terdiri dari fosfolipida, polisakarida, protein (Hadioetomo, 1993).

Adanya perbedaan komposisi dan struktur dinding sel menyebabkan respon yang berbeda terhadap berbagai perlakuan seperti pewarnaan gram, tekanan mekanis dan fisik, pemberian enzim, desinfektan dan antibiotik tertentu.

C. Pertumbuhan Mikroorganisme

Pertumbuhan mikroorganisme dapat ditinjau dari dua segi, yaitu:

1. Dari segi sel secara individu.
2. Dari segi sel secara populasi.

Kemampuan mikroorganisme untuk tumbuh dan tetap hidup merupakan hal penting dalam ekosistem pangan. Beberapa faktor utama yang mempengaruhi antara lain; suplai zat makanan, suhu, air, pH serta tersedianya oksigen (Hari Purnomo dan Adiono, 1987).

D. Antibakteri

Antibakteri adalah senyawa yang diperoleh dari hasil metabolisme sel hidup yang dapat membunuh atau menghambat pertumbuhan mikroorganisme terutama bakteri. Antibakteri yang bersifat menghambat pertumbuhan dinamakan bakteriostatik, sedang antibakteri yang bekerja mematikan bakteri dinamakan bakterisid. Pada dosis rendah antimikroba bakterisid dapat berubah menjadi bakteriostatik/tidak sama sekali dan sebaliknya antimikroba bakteriostatik dapat bersifat bakterisid pada dosis tinggi (Wattimena, 1985).

Masuknya zat antibakteri ke dalam sel dapat menyebabkan perubahan-perubahan sebagai berikut:

1. Kerusakan pada dinding sel, struktur dinding sel dapat dirusak dengan cara menghambat pembentukannya atau merubahnya setelah terbentuk.

2. Perubahan permeabilitas sel, membran sitoplasma mempertahankan bahan-bahan tertentu didalam sel serta mengatur aliran keluar masuknya bahan-bahan lain.

 Didalam populasi mikroorganisme mempunyai reaksi yang berbeda terhadap zat beracun, terutama ditentukan oleh perbedaan daya tahan, kebiasaan makan dan hidup, berdasarkan keturunan dan perbedaan umur (Koeman, 1987).

E. Pengujian antibakteri

Pengujian antibakteri secara laboratoris dapat dilakukan dengan beberapa metode, antara lain:
1. Metode Cakram Kertas (“paper disk”) (Collins, 1970)

Menggunakan cakram kertas atau kertas saring biasa dengan lebar tertentu, disterilkan sebelum diperlakukan. Dan setelah itu dicelupkan kedalam larutan yang akan diuji. Beberapa waktu kemudian cakram kertas yang telah berisi zat ditiap fraksi diletakkan diatas permukaan media dan bakteri, kemudian diinkubasi pada suhu kamar selama 24 jam. Setelah beberapa waktu akan nampak zona bening yang merupakan daerah penghambatan pertumbuhan disekitar cakram kertas yang mengindikasikan bahwa fraksi larutan mengandung zat antibakteri. Metode ini paling banyak dilakukan karena mudah dan cepat dalam perlakuaninya, serta hasilnya telah memenuhi standar penelitian.

2. Metode Perforasi (Collins, 1970)

Menggunakan agar cair yang dicampur homogen dengan suspensi bakteri. Kemudian dituang kedalam cawan petri steril dan diiarkan memadat. Dengan menggunakan alat perforator dibuat lubang dengan lebar tertentu, kedalam tiap-tiap lubang dimasukkan zat yang akan diuji. Dibiarkan beberapa waktu kemudian diinkubasi pada suhu kamar selama 24 jam. Langkah selanjutnya diukur daerah hambatnya dalam cm dengan jangka sorong.

3. Metode Kontak (Collins, 1970)

Dengan cara ini tiap 1 ml ekstrak dicampur dengan media 1% kemudian diитеsі suspensi bakteri, dikocok sampai homogen. Setiap satuan waktu tertentu ditanam ke plat agar sampai beberapa kali dan kemudian diinkubasi pada suhu pada suhu kamar. Metode ini biasanya dipakai untuk mengetahui pengaruh waktu terhadap pertumbuhan bakteri.