BAB II
TINJAUAN PUSTAKA

A. Biologi Chrysanthemum sp.

A.1. Sistematika

Sistematika bunga Chrysanthemum sp. menurut Tjitrosoepomo (1994) adalah sebagai berikut:

<table>
<thead>
<tr>
<th>Divisi</th>
<th>Spermatophyta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anak Divisi</td>
<td>Angiospermae</td>
</tr>
<tr>
<td>Kelas</td>
<td>Dicotyledonae</td>
</tr>
<tr>
<td>Anak Kelas</td>
<td>Sympetalae</td>
</tr>
<tr>
<td>Bangsa</td>
<td>Asterales (Campanulatae)</td>
</tr>
<tr>
<td>Suku</td>
<td>Asteraceae / Compositae</td>
</tr>
<tr>
<td>Marga</td>
<td>Chrysanthemum</td>
</tr>
<tr>
<td>Species</td>
<td>Chrysanthemum sp.</td>
</tr>
</tbody>
</table>

A.2. Ciri Umum

Tanaman ini berasal dari Yugoslavia dan kini banyak tersebar di banyak negara, seperti Swiss, Jepang, Australia, Afrika Timur, Afrika Utara, Kongo, Belgia, Brasil,
Filipina, California, Amerika, Kenya, Ekuador, Zaire, Rwanda, dan Tanzania. Di Indonesia tanaman ini banyak tumbuh pada ketinggian 1-1.650 meter di atas permukaan laut, seperti di sekitar daerah Tawangmangu dan Dieng (Wonosobo). *Chrysanthemum sp.* biasa ditanam sebagai tanaman hias dan dibudidayakan sebagai penghasil bunga potong, selain itu dikenal bermanfaat dalam pembuatan insektisida (Backer et al., 1965; Tjitrosoepomo, 1994; Steenis, 1975; Garden & Orchard, 1979; Bremmer, 1994).

Bagian tumbuhan ini yang berfungsi sebagai penghasil bahan aktif pengendali hama adalah daun, tangkai bunga, dan bunga (Grainge & Ahmed, 1987). Dari bagian bunga yang kemudian dikerlingkan sebagai "flores pyretri" dapat diekstraksi dengan petroleum ether, aceton, asam asetat glasial, ethylene dichloride, atau metanol (Baehaki, 1993). Dari hasil berbagai penelitian, setelah dianalisis menunjukkan adanya kandungan berbagai senyawa yaitu pyrethrin I (C₂₁ H₃₀ O₃), pyrethrin II (C₂₂ H₃₀ O₃) (Mabry & Gill, 1979; Garden & Orchard, 1979; Sutikno, 1992; Tjitrosoepomo, 1994), jasmolin I & II, cinerin I & II, pyrethrolon, resin, minyak atsiri (Tjitrosoepomo, 1994), sinerolon (Sastrodihardjo, 1984), dan tartridin dari jenis sesquiterpen laktan (Fischer, 1986).

Senyawa-senyawa tersebut sangat toksik terhadap beberapa serangga, menyebabkan paralis dengan cepat karena pengaruhnya pada sistem syaraf (Garden & Orchard, 1979; Sastrotrombo & Soetikno, 1992; Mabry & Gill, 1979). Pyrethrin I memiliki keaktifan membunuh dengan LD-50 0,6 mg per - serangga (Elliot & Janes,
B. Biologi Serangga *Heliothis armigera* Hbn

Menurut Borrör *et al.* (1992), sistematika dari *Heliothis armigera* adalah:

<table>
<thead>
<tr>
<th>Phylum</th>
<th>Arthropoda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelas</td>
<td>Insecta</td>
</tr>
<tr>
<td>Sub Kelas</td>
<td>Pterygota</td>
</tr>
<tr>
<td>Ordo</td>
<td>Lepidoptera</td>
</tr>
<tr>
<td>Sub Ordo</td>
<td>Frenatae</td>
</tr>
<tr>
<td>Famili</td>
<td>Noctuidae</td>
</tr>
<tr>
<td>Sub Famili</td>
<td>Noctuinae</td>
</tr>
<tr>
<td>Genus</td>
<td>Heliothis</td>
</tr>
<tr>
<td>Species</td>
<td>Heliothis armigera Hbn</td>
</tr>
</tbody>
</table>

Serangga *H. armigera* termasuk dalam golongan serangga yang mengalami metamorphosis secara sempurna. Siklus hidup serangga ini kira-kira 35 hari, dan dalam waktu tersebut serangga *H. armigera* mengalami beberapa stadia, yaitu: telur, larva, pupa, dan imago (Bedjo, 1995).

Larva yang baru menetas berwarna putih kekuningan dengan kepala berwarna hitam mempunyai rambut yang sangat halus. Larva muda dapat ditemukan di daun dan yang lebih tua dapat ditemukan dalam buah atau polong. Ketika larva tumbuh membesar, warnanya menjadi hijau dengan warna gelap terputus-putus garis keabu-abuan sepanjang tepi tubuhnya. Panjang larva berkisar antara 35-45 mm. Periode larva
berakhir setelah 18-25 hari dengan 5-6 kali pergantian instar. Larva bersifat kanibal (saling memakan). (David et al., 1976; Borrner et al., 1992; Anwar et al., 1991).

Pupa dapat ditemukan di celah-celah permukaan tanah, berwarna coklat sampai coklat gelap dan mengkilap dengan panjang sekitar 12-22 mm dan lebar 4-6 mm. Stadium pupa lamanya berkisar antara 6-21 hari. Perbedaan pupa jantan dan pupa betina didasarkan pada perbedaan bentuk yang terdapat pada bagian ventral segmen terakhir abdomen (Nasir, 1991 dalam Hadi, 1996).

C. Respon Serangga Terhadap Kehadiran Senyawa Allelokimia Dalam Makanannya

Apabila senyawa allelokimia bersifat menurunkan kemampuan larva dalam mencernakan makanan, maka serangga akan meningkatkan konsumsi makan untuk mengimbangi laju makanan yang cepat melalui saluran pencernaan. Keadaan ini menyebabkan jumlah makanan yang dicerna menjadi turun. Kegagalan larva dalam melakukan respon kompensasi pemanfaatan pakan mengakibatkan turunnya laju pertumbuhan larva, dan akan berakhir dengan kematian yang disebabkan karena kelaparan. Apabila senyawa allelokimia tersebut bersifat toksik, maka respon yang diberikan serangga adalah berupa penurunan jumlah makanan yang dikonsumsi. Keadaan ini menyebabkan serangga meningkatkan jumlah makanan yang dicerna dengan
mengingkatkan enzim pencernaan dan meningkatkan lamanya makanan berada dalam saluran pencernaan, akan tetapi laju pertumbuhan serangga menjadi turun karena diperlukan “metabolic cost” untuk detoksifikasi (Slansky & Scriber, 1985 dalam Yusrnarti, 1996).

Pertumbuhan larva erat kaitannya dengan sistem hormon. Larva akan berubah menjadi pupa, apabila kandungan hormon juvenille rendah dan menjadi dewasa apabila kandungan hormon ini rendah sekali dalam darah. Apabila kandungan hormon juvenille tinggi dalam darah pada saat hormon ektision dikeluarkan, proses pergantian kulit terjadi, akan tetapi bentuk larva masih tetap dipertahankan (Sastrodidhardjo, 1984; Pedigo, 1988 dalam Yusrnarti, 1996)

Zhang et al (1993 dalam Yusrnarti, 1996) mendefinisikan pertumbuhan serangga dalam stadium larva sebagai suatu kemampuan berganti kulit dan tumbuh menjadi instar berikutnya. Jumlah pergantian kulit menunjukan gerak maju pertumbuhan, dan jika seekor serangga tidak mengalami pergantian kulit, diasumsikan bahwa serangga itu tidak tumbuh. Oleh karena itu instar dapat digunakan sebagai suatu parameter pertumbuhan dan Indeks Pertumbuhan (GI) untuk menggambarkan laju pertumbuhan. Selanjutnya juga dikatakan bahwa nilai GI (Growth Index) = 1, berarti semua larva menjadi pupa, tetapi bila GI = 0, maka semua larva mati pada instar awal, dan bila nilai GI terletak antara 0 dan 1, ada larva yang berhasil menjadi pupa, dan sebagian ada yang mati pada setiap instar. Semakin banyak yang mati pada instar awal, nilai GI semakin kecil, dan nilai GI semakin besar apabila yang mati pada instar awal sedikit.