II. TINJAUAN PUSTAKA

A. Morfologi dan Struktur Sel Bakteri

Satuan ukuran bakteri adalah mikron, 1 mikron sama dengan 0,001 mm. Umumnya sel bakteri yang berbentuk bulat mempunyai diameter sekitar 0,7 - 1,3 mikron. Sedangkan sel bakteri yang berbentuk batang lebarnya sekitar 0,2 - 2,0
mikron dan panjangnya 0,7 - 3,7 mikron. Ukuran sel bakteri dipengaruhi oleh umur bakteri, perubahan lingkungan dan cara pewarnaan sel bakteri (Pelczar, 1982).

B. Pertumbuhan Bakteri

organisme pada suatu populasi atau suatu biakan (Jawetz, 1986).

Hubungan antara jumlah sel dengan waktu pertumbuhan dapat dinyatakan dalam kurva pertumbuhan. Jumlah sel bakteri biasanya dinyatakan dalam logaritma untuk memudahkan analisis sebab jika dinyatakan dalam skala biasa (aritmetika) maka akan diperoleh garis yang sangat lengkung. Kurva pertumbuhan bakteri pada umumnya dan secara sederhana di bagi dalam 4 fase yaitu fase lag merupakan periode awal yang tampak tanpa pertumbuhan, diikuti oleh suatu periode pertumbuhan yang cepat atau fase log, kemudian mendatar atau fase statis dan akhirnya diikuti oleh penurunan populasi sel-sel hidup atau fase kematian (Thomas, 1984).

Gambar 01. Kurva pertumbuhan bakteri dengan fase pertumbuhannya :

a. fase lag c. fase statis
b. fase log d. fase kematian

(Barkeley, 1982)
C. Pengukuran Pertumbuhan Bakteri

D. Logam Berat dan Daya Toksisitasnya

Logam berat mempunyai kriteria-kriteria yang sama dengan logam-logam lain. Perbedaannya terletak dari pengaruh yang dihasilkan bila logam berat ini berikatan dan atau masuk ke dalam tubuh organisme hidup. Bila logam berat baik yang beracun dan diperlukan oleh tubuh seperti tembaga (Cu), bila masuk ke dalam tubuh dalam jumlah berlebihan akan menimbulkan pengaruh-pengaruh buruk terhadap fungsi fisiologis tubuh. Jika yang masuk ke dalam
tubuh organisme hidup adalah unsur logam berat beracun seperti hidrogyrum (Hg), maka dapat dipastikan bahwa organisme tersebut akan keracunan. Ochiai dalam Palar (1994) telah mengelompokkan mekanisme keracunan oleh logam ke dalam 3 kategori yaitu:

1. Memblokir atau menghalangi kerja gugus fungsi biomolekul yang esensial untuk proses-proses biologi seperti protein dan enzim.
2. Menggantikan ion-ion logam esensial yang terdapat dalam molekul terkait.
3. Mengadakan modifikasi atau perubahan bentuk dari gugus-gugus aktif yang dimiliki oleh biomolekul.

Karakteristik dari kelompok logam berat adalah sebagai berikut:

a. Memiliki spesifikasi gravitasi yang sangat besar.
b. Mempunyai nomor atom 22-34 dan 40-50 serta unsur-unsur lantanida dan aktinida.
c. Mempunyai respon biokimia khas pada organisme hidup (Palar, 1994).

Secara umum logam berat di perairan berasal dari dua sumber yaitu: dari alam dan buatan/aktivitas manusia. Peristiwa-peristiwa alam seperti erosi, pengadukan atau "upwelling" di pantai/laut, letusan gunung berapi, debu dari udara adalah pemasok logam berat ke dalam perairan. Sedangkan proses industri seperti industri kimia, cat, farmasi, tekstil dan logam adalah aktivitas manusia yang diketahui dapat memberikan pasokan logam berat ke
perairan (Forstner dan Wiñtman, 1991).

E. Kandungan Logam Berat dalam Ekosistem Perairan

Logam berat yang terkandung dalam air dapat juga dipindahkan dari badan air melalui proses adsorpsi. Partikel-partikel bahan tertentu, seperti feri oksida hidrate, mangan dioksida hidrat, mineral lempung dan bahan-bahan organik dapat mengadsorpsi logam-logam berat yang terkandung dalam perairan (Bryan, 1976). Di daerah pantai umumnya banyak terkandung feri oksida hidrat daripada mangan.
dioksida hidrat, sehingga bahan ini yang memegang peran penting dalam pengadsorpsian logam di daerah pantai (Forstner, 1979).

Logam berat dalam air mungkin pula dipindahkan dari badan air melalui proses adsorpsi organisme air, baik itu secara langsung ataupun tidak langsung melalui rantai makanan organisme tersebut. Biasanya adsorpsi secara langsung lebih berbahaya daripada adsopsi secara tidak langsung (Supriharyono dkk, 1989).

F. Daya Mikroorganisme dalam Mereduksi Logam Berat

Penelitian mengenai kemampuan bakteri dalam mengurai-kan atau memecah logam telah dilakukan di Kanada. Pada penelitian ini digunakan proses metabolisme bakteri atau dengan memanfaatkan produk dari metabolisme itu untuk menguraikan atau memecah logam dari unsur mineral yang tak terlarut. Pada cara pertama, bakteri pengurai akan memecah sulfida yang sebelumnya mengendap dalam lumpur sungai

G. Logam Berat Pb

Timbal atau disebut juga timah hitam dalam bahasa ilmiahnya dinamakan Plumbum dan disimbulkan Pb. Melalui proses-proses geologi, timbal terkonsentrasi dalam deposit seperti bijih logam. Persenyawaan bijih logam timbal ditemukan dalam bentuk galena (PbS), anglesit (PbSO₄) dan dalam bentuk minum (Pb₃O₄). Bisa dikatakan bahwa timbal tidak pernah ditemukan dalam bentuk logam murninya. Logam timbal mempunyai ciri-ciri sebagai berikut:

a. Merupakan logam yang lunak, dapat dipotong dengan menggunakan tangan atau pisau dan dapat dibentuk dengan mudah.

b. Merupakan logam yang tahan terhadap peristiwa korosi atau karat sehingga sering digunakan sebagai bahan "coating".

c. Mempunyai titik lebur rendah, hanya 327,5 derajat Celcius.

d. Mempunyai kerapatan yang lebih besar dibandingkan dengan logam-logam biasa, kecuali emas dan mercury.

e. Merupakan penghantar listrik yang tidak baik.
Timbal dan persenyawaannya dapat berada di dalam badan perairan secara alamiah dari proses geologi seperti proses korosifikasi batuan mineral akibat hempasan gelombang dan angin. Juga dari pengkristalan timbal di udara dengan bantuan air hujan dan sebagai dampak dari aktivitas kehidupan manusia diantaranya adalah air buangan/limbah industri yang berkaitan dengan timbal. Limbah ini akan jatuh pada jalur perairan seperti anak sungai untuk kemudian dibawa terus ke lautan. Adanya timbal dalam lingkungan perairan dapat menyebabkan tercemarnya tata lingkungan perairan yang dimasukinya. Timbal dalam air terdapat dalam bentuk komplek dengan gugus organik membentuk larutan koloidal atau dalam bentuk ion Pb"" dan PbCl (Palar, 1994).

Timbal dapat masuk ke dalam tubuh manusia melalui pernapasan, makanan dan air yang terkontaminasi oleh logam timbal dan absorpsi melalui kulit. Pada manusia dewasa jumlah kandungan timbal dalam darah tidak sama. Kandungan timbal dalam darah manusia dapat digolongkan menjadi empat kategori yaitu :

A (normal) kandungan Pb < 40 ug Pb/100ml darah
B (dapat ditoleransi) kandungan Pb 40-80 ug Pb/100ml darah
C (berlebih) kandungan Pb 80-120 ug Pb/100ml darah
D (tingkat bahaya) kandungan Pb 120 ug Pb/100ml darah
Apabila manusia terkontaminasi oleh timbal dalam batasan normal atau dapat ditoleransi maka daya racun yang dimiliki oleh Pb tidak akan bekerja dan tidak menimbulkan pengaruh apa-apa. Tetapi bila jumlah yang diserap telah mencapai batas ambang atau melebihi maka individu yang terkontaminasi akan memperlihatkan gejala keracunan timbal. Keracunan timbal dapat menyebabkan anemia, kerusakan susunan saraf pusat dan ginjal (Fardiaz, 1992).