LAMPIRAN
Lampiran 01. Perhitungan Statistik Pengaruh Gibberelin pada Konsentrasi Berbeda terhadap Jumlah Bunga per Tanaman

<table>
<thead>
<tr>
<th>Ulangan</th>
<th>Perlakuan</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>53</td>
<td>54</td>
</tr>
<tr>
<td>2</td>
<td>43</td>
<td>59</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>59</td>
</tr>
<tr>
<td>5</td>
<td>48</td>
<td>64</td>
</tr>
<tr>
<td>JUMLAH</td>
<td>234</td>
<td>296</td>
</tr>
<tr>
<td>RATA-RATA</td>
<td>46,8</td>
<td>59,2</td>
</tr>
</tbody>
</table>

Faktor koreksi = 1/30 X (1338)^2 = 112608,13

Jk total = [(53)^2 + (54)^2 + ... + (50)^2] - 112608,13
= 2453,87

JK perlakuan = 1/5 [(234)^2 + (296)^2 + ... + (287)^2] - 112608,13
= 1951,87

JK galat = 2453,87 - 1951,87 = 502

DB total = 5 X 6 - 1 = 29

DB perlakuan = 6 - 1 = 5

DB galat = 6 (5 - 1) = 24

KT perlakuan = 1951,87 / 5 = 390,374

KT galat = 502 / 24 = 20,92

F hitung = 390,374 / 20,92 = 18,66
Tabel Anova Pengaruh Gibberelin pada Konsentrasi Berbeda terhadap Jumlah Bunga per Tanaman

<table>
<thead>
<tr>
<th>SUMBER KERAGAMAN</th>
<th>DB</th>
<th>JK</th>
<th>KT</th>
<th>F_HITUNG</th>
<th>F_TABLE(5,24) 5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perlakuan</td>
<td>5</td>
<td>1951,87</td>
<td>390,374</td>
<td>18,66</td>
<td>2,62</td>
</tr>
<tr>
<td>Galat</td>
<td>24</td>
<td>502</td>
<td>20,92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>29</td>
<td>2453,87</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F hitung > F tabel, menyatakan minimal ada sepasang perlakuan yang berbeda nyata pada tingkat signifikan 5 %

Perhitungan Uji Wilayah Berganda Baru Duncan antar Perlakuan Gibberelin terhadap Jumlah Bunga per Tanaman

\[D_{(p,5%)} = R_{(DBG,5%)} \times S_x \]

Dan \[S_x = \sqrt{\frac{KTG}{n}} = \sqrt{\frac{20,92}{5}} = 2,05 \]

Besarnya Nilai Range pada DBG = 24 (2,3,4,5,6)

<table>
<thead>
<tr>
<th>P</th>
<th>P₂</th>
<th>P₃</th>
<th>P₄</th>
<th>P₅</th>
<th>P₆</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{(DBG,5%)}</td>
<td>2,92</td>
<td>3,07</td>
<td>3,15</td>
<td>3,22</td>
<td>3,28</td>
</tr>
<tr>
<td>D_{(p,5%)}</td>
<td>5,99</td>
<td>6,29</td>
<td>6,46</td>
<td>6,60</td>
<td>6,72</td>
</tr>
</tbody>
</table>

Hasil Uji Duncan untuk Jumlah Bunga per Tanaman

<table>
<thead>
<tr>
<th>PERLAKUAN</th>
<th>RATA-RATA</th>
<th>SELISIH</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>70,6</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>69,4</td>
<td>1,20</td>
</tr>
<tr>
<td>C</td>
<td>64,2</td>
<td>6,40*</td>
</tr>
<tr>
<td>B</td>
<td>59,2</td>
<td>11,40*</td>
</tr>
<tr>
<td>F</td>
<td>57,4</td>
<td>13,40*</td>
</tr>
<tr>
<td>A</td>
<td>46,8</td>
<td>23,80*</td>
</tr>
</tbody>
</table>

Keterangan : Angka pada kolom yang sama diikuti oleh superskrip yang sama menunjukkan perlakuan yang tidak berbeda nyata dalam Uji Duncan pada tingkat signifikan 5 %
Lampiran 02. Perhitungan Statistik Pengaruh Gibberelin pada Konsentrasi Berbeda terhadap Jumlah Polong per Tanaman

<table>
<thead>
<tr>
<th>Ulangan</th>
<th>Perlakuan</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>42</td>
<td>56</td>
</tr>
<tr>
<td>3</td>
<td>39</td>
<td>55</td>
</tr>
<tr>
<td>4</td>
<td>48</td>
<td>56</td>
</tr>
<tr>
<td>5</td>
<td>45</td>
<td>63</td>
</tr>
<tr>
<td>JUMLAH</td>
<td>224</td>
<td>280</td>
</tr>
<tr>
<td>RATA-RATA</td>
<td>44,8</td>
<td>56,0</td>
</tr>
</tbody>
</table>

Tabel Anova Pengaruh Gibberelin pada Konsentrasi Berbeda terhadap Jumlah Polong per Tanaman

<table>
<thead>
<tr>
<th>SUMBER KERAGAMAN</th>
<th>DB</th>
<th>JK</th>
<th>KT</th>
<th>F HITUNG</th>
<th>F TABEL (5.24) 5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perlakuan</td>
<td></td>
<td>5</td>
<td>1694,67</td>
<td>338,93</td>
<td>17,72</td>
</tr>
<tr>
<td>Galat</td>
<td>24</td>
<td>459,2</td>
<td>19,13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>29</td>
<td>2153,87</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F hitung > F tabel, menyatakan minimal ada sepasang perlakuan yang berbeda nyata pada tingkat signifikan 5 %

Perhitungan Uji Wilayah Berganda Barn Duncan antar Perlakuan Gibberelin terhadap Jumlah Polong per Tanaman

\[D_{0.05} = R_{DBG,0.05} \times S_x \]

Dan \[S_x = \sqrt{\frac{KTG}{n}} = \sqrt{\frac{19,13}{5}} = 1,96 \]

Besarnya Nilai Range pada DBG = 24 (2,3,4,5,6)

<table>
<thead>
<tr>
<th>P</th>
<th>P₂</th>
<th>P₃</th>
<th>P₄</th>
<th>P₅</th>
<th>P₆</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{24,0.05}</td>
<td>2,92</td>
<td>3,07</td>
<td>3,15</td>
<td>3,22</td>
<td>3,28</td>
</tr>
<tr>
<td>D_{(p,0.05)}</td>
<td>5,72</td>
<td>6,02</td>
<td>6,17</td>
<td>6,31</td>
<td>6,43</td>
</tr>
</tbody>
</table>
Hasil Uji Duncan untuk Jumlah Polong per Tanaman

<table>
<thead>
<tr>
<th>PERLAKUAN</th>
<th>RATA-RATA</th>
<th>SELISIH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E</td>
<td>D</td>
</tr>
<tr>
<td>E</td>
<td>67,4</td>
<td>-</td>
</tr>
<tr>
<td>D</td>
<td>65,4</td>
<td>2,00</td>
</tr>
<tr>
<td>C</td>
<td>61,0</td>
<td>6,40*</td>
</tr>
<tr>
<td>B</td>
<td>56,0</td>
<td>11,40*</td>
</tr>
<tr>
<td>F</td>
<td>55,0</td>
<td>12,40*</td>
</tr>
<tr>
<td>A</td>
<td>44,8</td>
<td>22,60*</td>
</tr>
</tbody>
</table>

Keterangan: Angka pada kolom yang sama diikuti oleh superskrip yang sama menunjukkan perlakuan yang tidak berbeda nyata dalam Uji Duncan pada tingkat signifikans 5%

Lampiran 03. Perhitungan Statistik Pengaruh Gibberin pada Konsentrasi Berbeda terhadap Berat Basah Polong per Tanaman

<table>
<thead>
<tr>
<th>U langan</th>
<th>Perlakuan</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>22,60</td>
<td>21,50</td>
</tr>
<tr>
<td>2</td>
<td>18,94</td>
<td>24,15</td>
</tr>
<tr>
<td>3</td>
<td>17,82</td>
<td>23,70</td>
</tr>
<tr>
<td>4</td>
<td>21,65</td>
<td>24,20</td>
</tr>
<tr>
<td>5</td>
<td>21,28</td>
<td>27,12</td>
</tr>
<tr>
<td>JUMLAH</td>
<td>102,29</td>
<td>120,67</td>
</tr>
<tr>
<td>RATA-RATA</td>
<td>20,46</td>
<td>24,13</td>
</tr>
</tbody>
</table>

Tabel Anova Pengaruh Gibberin pada Konsentrasi Berbeda terhadap Berat Basah Polong per Tanaman

<table>
<thead>
<tr>
<th>SUMBER KERAGAMAN</th>
<th>DB</th>
<th>JK</th>
<th>KT</th>
<th>F HITUNG</th>
<th>F TABEL(5,24) 5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perlakuan</td>
<td>5</td>
<td>138,17</td>
<td>27,63</td>
<td>8,30</td>
<td>2,62</td>
</tr>
<tr>
<td>Galat</td>
<td>24</td>
<td>79,97</td>
<td>3,33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>29</td>
<td>218,14</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F hitung > F tabel, menyatakan minimal ada sepasang perlakuan yang berbeda nyata pada tingkat signifikans 5%
Perhitungan Uji Wilayah Berganda Baru Duncan antar Perlakuan Gibberelin terhadap Berat Basah Polong per Tanaman

\[D_{(2,5\%)} = R_{(DBG,5\%)} \times S_x \]

Dan \[S_x = \sqrt{\frac{\text{KTG}}{n}} = \sqrt{\frac{3,33}{5}} = 0,82 \]

Besarnya Nilai Range pada DBG = 24 (2,3,4,5,6)

<table>
<thead>
<tr>
<th>P</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>P5</th>
<th>P6</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{(24,5%)}</td>
<td>2,92</td>
<td>3,07</td>
<td>3,15</td>
<td>3,22</td>
<td>3,28</td>
</tr>
<tr>
<td>D_{(P,5%)}</td>
<td>2,39</td>
<td>2,52</td>
<td>2,58</td>
<td>2,64</td>
<td>2,69</td>
</tr>
</tbody>
</table>

Hasil Uji Duncan untuk Berat Basah Polong per Tanaman

<table>
<thead>
<tr>
<th>PERLAKUAN</th>
<th>RATA-RATA</th>
<th>SELISIH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E</td>
<td>D</td>
</tr>
<tr>
<td>E</td>
<td>26,36</td>
<td>-</td>
</tr>
<tr>
<td>D</td>
<td>26,26</td>
<td>0,10</td>
</tr>
<tr>
<td>C</td>
<td>25,69</td>
<td>0,67</td>
</tr>
<tr>
<td>B</td>
<td>24,13</td>
<td>2,23</td>
</tr>
<tr>
<td>F</td>
<td>22,61</td>
<td>3,75*</td>
</tr>
<tr>
<td>A</td>
<td>20,46</td>
<td>5,90*</td>
</tr>
</tbody>
</table>

Keterangan : Angka pada kolom yang sama diikuti oleh superskrip yang sama menunjukkan perlakuan yang tidak berbeda nyata dalam Uji Duncan pada tingkat signifikan 5 %

Lampiran 04. Perhitungan Statistik Pengaruh Gibberelin pada Konsentrasi Berbeda terhadap Berat Kering Polong per Tanaman

<table>
<thead>
<tr>
<th>Ulangan</th>
<th>Perlakuan</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>4,98</td>
<td>4,88</td>
</tr>
<tr>
<td>2</td>
<td>4,15</td>
<td>5,45</td>
</tr>
<tr>
<td>3</td>
<td>3,90</td>
<td>5,30</td>
</tr>
<tr>
<td>4</td>
<td>4,76</td>
<td>5,40</td>
</tr>
<tr>
<td>5</td>
<td>4,45</td>
<td>6,09</td>
</tr>
<tr>
<td>JUMLAH</td>
<td>22,24</td>
<td>27,12</td>
</tr>
<tr>
<td>RATA-RATA</td>
<td>4,45</td>
<td>5,42</td>
</tr>
</tbody>
</table>
Tabel Anova Pengaruh Gibberelin pada Konsentrasi Berbeda terhadap Berat Kering Polong per Tanaman

<table>
<thead>
<tr>
<th>SUMBER KERAGAMAN</th>
<th>DB</th>
<th>JK</th>
<th>KT</th>
<th>F_HITUNG</th>
<th>F_TAB(5,24) 5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perlakuan</td>
<td>5</td>
<td>9,66</td>
<td>1,93</td>
<td>10,72</td>
<td>2,62</td>
</tr>
<tr>
<td>Galat</td>
<td>24</td>
<td>4,33</td>
<td>0,18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>29</td>
<td>13,99</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F hitung > F tabel, menyatakan minimal ada sepasang perlakuan yang berbeda nyata pada tingkat signifikan 5 %

Perhitungan Uji Wilayah Berganda Baru Duncan antar Perlakuan Gibberelin terhadap Berat Kering Polong per Tanaman

\[D_{(p,5\%)} = R_{(DBG,P,5\%)} \times S_X \]

Dan \[S_X = \sqrt{\frac{KTG}{n}} = \sqrt{\frac{0,18}{5}} = 0,19 \]

Besarnya Nilai Range pada DBG = 24 (2,3,4,5,6)

<table>
<thead>
<tr>
<th>P</th>
<th>P_2</th>
<th>P_3</th>
<th>P_4</th>
<th>P_5</th>
<th>P_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{(24,P,5%)}</td>
<td>2,92</td>
<td>3,07</td>
<td>3,15</td>
<td>3,22</td>
<td>3,28</td>
</tr>
<tr>
<td>D_{(p,5%)}</td>
<td>0,55</td>
<td>0,58</td>
<td>0,60</td>
<td>0,61</td>
<td>0,62</td>
</tr>
</tbody>
</table>

Hasil Uji Duncan untuk Berat Kering Polong per Tanaman

<table>
<thead>
<tr>
<th>PERLAKUAN</th>
<th>RATA-RATA</th>
<th>SELISIH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E</td>
<td>D</td>
</tr>
<tr>
<td>E</td>
<td>6,09</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>6,04</td>
<td>0,05</td>
</tr>
<tr>
<td>C</td>
<td>5,68</td>
<td>0,41</td>
</tr>
<tr>
<td>B</td>
<td>5,42</td>
<td>0,67*</td>
</tr>
<tr>
<td>F</td>
<td>5,12</td>
<td>0,97*</td>
</tr>
<tr>
<td>A</td>
<td>4,45</td>
<td>1,64*</td>
</tr>
</tbody>
</table>

Keterangan : Angka pada kolom yang sama diikuti oleh superskrip yang sama menunjukkan perlakuan yang tidak berbeda nyata dalam Uji Duncan pada tingkat signifikan 5 %
Lampiran 05. Data Pengamatan suhu, Kelembaban Udara, dan Intensitas Cahaya
Bulan April

<table>
<thead>
<tr>
<th>Tgl</th>
<th>Temperatur (°C)</th>
<th>Kelembaban udara (%)</th>
<th>Intensitas Cahaya (Lux)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>07.00</td>
<td>12.00</td>
<td>17.00</td>
</tr>
<tr>
<td>1</td>
<td>27</td>
<td>35</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>26</td>
<td>34</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>27</td>
<td>35</td>
<td>29</td>
</tr>
<tr>
<td>4</td>
<td>27</td>
<td>35</td>
<td>29</td>
</tr>
<tr>
<td>5</td>
<td>26</td>
<td>35</td>
<td>28</td>
</tr>
<tr>
<td>6</td>
<td>26</td>
<td>35</td>
<td>28</td>
</tr>
<tr>
<td>7</td>
<td>25</td>
<td>34</td>
<td>29</td>
</tr>
<tr>
<td>8</td>
<td>27</td>
<td>35</td>
<td>29</td>
</tr>
<tr>
<td>9</td>
<td>26</td>
<td>35</td>
<td>29</td>
</tr>
<tr>
<td>10</td>
<td>27</td>
<td>35</td>
<td>28</td>
</tr>
<tr>
<td>11</td>
<td>26</td>
<td>34</td>
<td>29</td>
</tr>
<tr>
<td>12</td>
<td>26</td>
<td>34</td>
<td>29</td>
</tr>
<tr>
<td>13</td>
<td>27</td>
<td>35</td>
<td>28</td>
</tr>
<tr>
<td>14</td>
<td>27</td>
<td>35</td>
<td>29</td>
</tr>
<tr>
<td>15</td>
<td>27</td>
<td>34</td>
<td>29</td>
</tr>
<tr>
<td>16</td>
<td>27</td>
<td>34</td>
<td>28</td>
</tr>
<tr>
<td>17</td>
<td>27</td>
<td>34</td>
<td>28</td>
</tr>
<tr>
<td>18</td>
<td>26</td>
<td>35</td>
<td>29</td>
</tr>
<tr>
<td>19</td>
<td>27</td>
<td>34</td>
<td>29</td>
</tr>
<tr>
<td>20</td>
<td>27</td>
<td>34</td>
<td>28</td>
</tr>
<tr>
<td>21</td>
<td>27</td>
<td>34</td>
<td>28</td>
</tr>
<tr>
<td>22</td>
<td>26</td>
<td>34</td>
<td>29</td>
</tr>
<tr>
<td>23</td>
<td>26</td>
<td>35</td>
<td>29</td>
</tr>
<tr>
<td>24</td>
<td>25</td>
<td>35</td>
<td>29</td>
</tr>
<tr>
<td>25</td>
<td>27</td>
<td>35</td>
<td>28</td>
</tr>
<tr>
<td>26</td>
<td>27</td>
<td>34</td>
<td>28</td>
</tr>
<tr>
<td>27</td>
<td>27</td>
<td>34</td>
<td>29</td>
</tr>
<tr>
<td>28</td>
<td>26</td>
<td>35</td>
<td>29</td>
</tr>
<tr>
<td>29</td>
<td>26</td>
<td>35</td>
<td>28</td>
</tr>
<tr>
<td>30</td>
<td>27</td>
<td>35</td>
<td>29</td>
</tr>
<tr>
<td>Jml</td>
<td>798</td>
<td>1039</td>
<td>857</td>
</tr>
<tr>
<td>Rata</td>
<td>26,5</td>
<td>34,63</td>
<td>28,37</td>
</tr>
</tbody>
</table>
Lampiran 06. Data Pengamatan suhu, Kelembaban Udara, dan Intensitas Cahaya
Bulan Mei

<table>
<thead>
<tr>
<th>Tgl</th>
<th>Bulan Mei</th>
<th>Temperatur (°C)</th>
<th>Kelembaban udara (%)</th>
<th>Intensitas Cahaya (Lux)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>07.00</td>
<td>12.00</td>
<td>17.00</td>
<td>Rata-rata</td>
</tr>
<tr>
<td>1</td>
<td>27</td>
<td>34</td>
<td>29</td>
<td>30,3</td>
</tr>
<tr>
<td>2</td>
<td>27</td>
<td>35</td>
<td>29</td>
<td>30,3</td>
</tr>
<tr>
<td>3</td>
<td>26</td>
<td>35</td>
<td>28</td>
<td>29,7</td>
</tr>
<tr>
<td>4</td>
<td>26</td>
<td>35</td>
<td>28</td>
<td>29,7</td>
</tr>
<tr>
<td>5</td>
<td>26</td>
<td>34</td>
<td>28</td>
<td>29,7</td>
</tr>
<tr>
<td>6</td>
<td>26</td>
<td>34</td>
<td>29</td>
<td>29,7</td>
</tr>
<tr>
<td>7</td>
<td>26</td>
<td>35</td>
<td>29</td>
<td>29,7</td>
</tr>
<tr>
<td>8</td>
<td>27</td>
<td>35</td>
<td>29</td>
<td>30,3</td>
</tr>
<tr>
<td>9</td>
<td>27</td>
<td>34</td>
<td>28</td>
<td>30,3</td>
</tr>
<tr>
<td>10</td>
<td>27</td>
<td>34</td>
<td>28</td>
<td>29,7</td>
</tr>
<tr>
<td>11</td>
<td>26</td>
<td>35</td>
<td>29</td>
<td>30,0</td>
</tr>
<tr>
<td>12</td>
<td>26</td>
<td>35</td>
<td>29</td>
<td>30,3</td>
</tr>
<tr>
<td>13</td>
<td>27</td>
<td>35</td>
<td>29</td>
<td>30,0</td>
</tr>
<tr>
<td>14</td>
<td>27</td>
<td>34</td>
<td>28</td>
<td>29,7</td>
</tr>
<tr>
<td>15</td>
<td>27</td>
<td>34</td>
<td>28</td>
<td>29,7</td>
</tr>
<tr>
<td>16</td>
<td>26</td>
<td>34</td>
<td>29</td>
<td>30,0</td>
</tr>
<tr>
<td>17</td>
<td>27</td>
<td>34</td>
<td>29</td>
<td>30,0</td>
</tr>
<tr>
<td>18</td>
<td>27</td>
<td>34</td>
<td>29</td>
<td>30,3</td>
</tr>
<tr>
<td>19</td>
<td>27</td>
<td>35</td>
<td>29</td>
<td>30,0</td>
</tr>
<tr>
<td>20</td>
<td>26</td>
<td>35</td>
<td>29</td>
<td>30,0</td>
</tr>
<tr>
<td>21</td>
<td>27</td>
<td>35</td>
<td>28</td>
<td>30,0</td>
</tr>
<tr>
<td>22</td>
<td>27</td>
<td>35</td>
<td>28</td>
<td>30,0</td>
</tr>
<tr>
<td>23</td>
<td>26</td>
<td>34</td>
<td>28</td>
<td>29,3</td>
</tr>
<tr>
<td>24</td>
<td>26</td>
<td>35</td>
<td>27</td>
<td>29,0</td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>35</td>
<td>27</td>
<td>29,3</td>
</tr>
<tr>
<td>26</td>
<td>27</td>
<td>35</td>
<td>28</td>
<td>30,3</td>
</tr>
<tr>
<td>27</td>
<td>28</td>
<td>35</td>
<td>28</td>
<td>30,3</td>
</tr>
<tr>
<td>28</td>
<td>29</td>
<td>36</td>
<td>29</td>
<td>31,3</td>
</tr>
<tr>
<td>29</td>
<td>27</td>
<td>35</td>
<td>28</td>
<td>30,3</td>
</tr>
<tr>
<td>30</td>
<td>28</td>
<td>36</td>
<td>29</td>
<td>31,0</td>
</tr>
<tr>
<td>31</td>
<td>28</td>
<td>35</td>
<td>27</td>
<td>30,0</td>
</tr>
<tr>
<td>Int</td>
<td>830</td>
<td>1076</td>
<td>881</td>
<td>929</td>
</tr>
<tr>
<td>Rata-rata</td>
<td>26,77</td>
<td>34,71</td>
<td>38,42</td>
<td>29,97</td>
</tr>
</tbody>
</table>